Electronic Noses for Bioreactor Monitoring

  • Carl-Fredrik Mandenius
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 66)


Electronic noses provide new possibilities for monitor the state of a cultivation non-invasively in real-time. The electronic nose uses an array of chemical gas sensors that monitors the off-gas from the bioreactor. By taking advantage of the off-gas components’ different affinities towards the sensors in the array it is possible with the help of pattern recognition methods to extract valuable information from the culture in a way similar to the human nose. For example, with artificial neural networks, metabolite and biomass concentration can be predicted, the fermentability of a medium before starting the fermentation estimated, and the growth and production stages of the culture visualized. In this review these and other recent results with electronic noses from monitoring microbial and cell cultures in bioreactors are described.


Artificial nose Chemical multisensor array Artificial neural network Bioprocess monitoring Bioprocess control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Persaud K, Dodd GH (1982) Nature 299:352CrossRefGoogle Scholar
  2. 2.
    Gardner JW, Bartlett PN (1992) In: Gardner JW, Bartlett PN (eds) Sensors and sensory systems for electronic nose. Kluwer Academic Publisher, London, p 161Google Scholar
  3. 3.
    Slater JM, Watt EJ (1991) Analyst 116:1125CrossRefGoogle Scholar
  4. 4.
    Gardner JW (1991) Sens Actuators B 4:109CrossRefGoogle Scholar
  5. 5.
    Kress-Rogers E (1997) Handbook of biosensors and electronic noses, medicine, food and environment, CRC Press, New YorkGoogle Scholar
  6. 6.
    Börjesson T, Eklöv T, Jonsson A, Sundgren H, Schnurer J (1996) Cereal Chem 73:457Google Scholar
  7. 7.
    Pearce TC, Gardner JW, Friel S, Bartlett PN, Blair N (1993) Analyst 118:371CrossRefGoogle Scholar
  8. 8.
    Shurmer HV, Gardner JW, Chan HT (1989) Sens Actuators 18:361CrossRefGoogle Scholar
  9. 9.
    Nakamoto T, Fukuda A, Moriizumi T (1993) Sens Actuators B 10:85CrossRefGoogle Scholar
  10. 10.
    Parry AD, Chadwick PR, Simon D, Oppenheimer BA, McCollum CN (1995) J Wound Care 4:404Google Scholar
  11. 11.
    Winquist F, Hörnsten G, Sundgren H, Lundström I (1993) Meas Sci Technol 4:1493CrossRefGoogle Scholar
  12. 12.
    Gibson TD, Prosser O, Hulbert JN, Marshall RW, Corcoran P, Lowery P, Ruck-Keene EA, Heron S (1997) Sens Actuators B 44:413CrossRefGoogle Scholar
  13. 13.
    Gardner JW, Craven M, Dow C, Hines EL (1998) Meas Sci Technol 9:120CrossRefGoogle Scholar
  14. 14.
    Mandenius CF, Lundström I, Bachinger T (1996) 1st Eur Symp Biochem Eng Sci, p 104Google Scholar
  15. 15.
    Yamazoe N, Miura N (1992) In: Sberveglieri G (ed) Gas sensors. Kluwer, Andrecht, p 1Google Scholar
  16. 16.
    Spetz A, Winquist F, Sundgren H, Lundström I (1992) In: Sberveglieri G(ed) Gas sensors. Kluwer Academic Publishers, Andrecht, p 219Google Scholar
  17. 17.
    Pelosi P, Persaud, KC (1988) In: Dario P (ed) Sensors and sensory systems for advanced robots, NATO ASI Series F Computer and system science. Springer, New York, p 361Google Scholar
  18. 18.
    Hatfield JV, Neaves P, Hicks PJ, Persaud K, Travers P (1994) Sens Actuators B 18–19:221CrossRefGoogle Scholar
  19. 19.
    Shurmer HV, Gardner JW, Corcoran P (1990) Sens Actuators B 1:256CrossRefGoogle Scholar
  20. 22.
    AlphaMos SA, Toulouse, FranceGoogle Scholar
  21. 23.
    Bachinger T, Mårtensson P, Mandenius CF (1998) J Biotechnol 60:55CrossRefGoogle Scholar
  22. 24.
    Bishop CM (1995) Neural networks for pattern recognition. Oxford University PressGoogle Scholar
  23. 25.
    Jolliffe IT (1986) Principal component analysis. Springer, New YorkGoogle Scholar
  24. 26.
    Sundgren H, Winqusit F, Lukkari I, Lundström I (1991) Meas Sci Technol 2:464CrossRefGoogle Scholar
  25. 27.
    Eklöv T, Mårtensson P, Lundström I (1999) Anal ChimActa 381:221Google Scholar
  26. 28.
    Bach HP, Woehrer W, Roehr M (1978) Biotechnol Bioeng 20:799CrossRefGoogle Scholar
  27. 29.
    Lidén H, Mandenius, CF, Gorton L, Meinander N, Lundström I, Winquist F (1998) Anal ChimActa 361:223Google Scholar
  28. 30.
    Lidén H (1998) PhD thesis, Lund University, SwedenGoogle Scholar
  29. 31.
    Bachinger T, Lidén H, Mårtensson P, Mandenius CF (1998) Seminars Food Analysis 3:85Google Scholar
  30. 32.
    Lidén H, Bachinger T, Gorton L, Mandenius CF (1998) Submitted to Anal ChemGoogle Scholar
  31. 33.
    Mandenius CF, Eklöv T, Lundström I (1997) Biotechnol Bioeng 55:427CrossRefGoogle Scholar
  32. 34.
    Namdev PK, Alroy Y, Singh V (1998) Biotechnol Prog 14:75CrossRefGoogle Scholar
  33. 35.
    Mandenius CF, Lidén H, Eklöv T, Taherzadeh M, Lidén G (1999) Biotechnol Prog (in press)Google Scholar
  34. 36.
    Mandenius CF, Hagman A, Dunås F, Sundgren H, Lundström I (1998) Biosens Bioelectron 13:193CrossRefGoogle Scholar
  35. 37.
    Bachinger T, Riese U, Eriksson R, Mandenius CF (1999) J Biotechnol (accepted for publication)Google Scholar
  36. 38.
    Rezanka T, Libalova D, Votruba J, Viden I (1994) Biotechnol Lett 16:75CrossRefGoogle Scholar
  37. 39.
    Bachinger T, Bayer K, Mandenius CF (1999) (to be submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Carl-Fredrik Mandenius
    • 1
  1. 1.Department of Physics and Measurement TechnologyLinköping UniversityLinköpingSweden

Personalised recommendations