Skip to main content

Normalized scaling relations as a natural classification of linear macromolecules according to size

  • Conference paper
  • First Online:
Book cover Analytical Ultracentrifugation V

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 113))

Abstract

The scaling relationships (Mark—Kuhn—Houwink—Sakurada type) are considered for the following hydrodynamic values: intrinsic viscosity, velocity sedimentation coefficient and translational diffusion coefficient and the concentration sedimentation coefficient (Gralen coefficient). By also taking into account the mass per unit length we can obtain “normalized scaling plots” which provide a convenient way of representing the rigidity of linear polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  2. Tsvetkov VN, Eskin VE, Frenkel SYa (1970) Structure of macromolecules in solution. Butterworths, London

    Google Scholar 

  3. Kirkwood J, Riseman J (1948) J Chem Phys 16:565

    Article  CAS  Google Scholar 

  4. Svedberg T, Pedersen KO (1940) The ultracentrifuge. Oxford University Press, Oxford

    Google Scholar 

  5. Flory P (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  6. Yamakawa H (1971) Modern theory of polymer solutions. Harper and Row, New York

    Google Scholar 

  7. Fujita H (1990) Polymer solutions. Elsevier, Amsterdam

    Google Scholar 

  8. Wales M, van Holde K (1954) J Polym Sci 14:81

    Article  CAS  Google Scholar 

  9. Rowe A (1977) Biopolymers 16:2595

    Article  CAS  Google Scholar 

  10. Pavlov G, Frenkel S (1995) Prog Colloid Polym Sci 99:101

    Article  CAS  Google Scholar 

  11. Pavlov G (1997) Eur Biophys J 25:385

    Article  CAS  Google Scholar 

  12. Gray H, Bloomfield V, Hearst J (1967) J Chem Phys 46:1493

    Article  CAS  Google Scholar 

  13. Sharp P, Bloomfield V (1968) J Chem Phys 48:2149

    Article  CAS  Google Scholar 

  14. Ptitsyn OB, Eizner Yu E (1959) Zh Tekh Fiz 29:1105

    Google Scholar 

  15. Pavlov G, Panarin E, Korneeva E, Kurochkin C, Baikov V, Ushakova V (1990) Makromol Chem 191:2889

    Article  CAS  Google Scholar 

  16. Bushin SV, Astapenko EP (1986) Vysokomol Soedin 28:1499

    CAS  Google Scholar 

  17. Pavlov GM, Korneeva EV, Michailova NA, Ivanova NP, Panarin EF (1993) Vysokomol Soedin 35:1647

    CAS  Google Scholar 

  18. de Gennes P (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  19. Mandelbrot B (1982) The fractal geometry of nature. Freeman, San Fransisco

    Google Scholar 

  20. Pietronero L, Tosatti E (eds) (1986) Fractal in physics. Elsevier, Amsterdam

    Google Scholar 

  21. Grosberg A, Khochlov A (1989) Physics in the world of polymers. Nauka, Moscow

    Google Scholar 

  22. Pavlov G, Rowe A, Harding S (1997) Trends Anal Chem 16:401

    Article  CAS  Google Scholar 

  23. Pavlov G, Korneeva E, Harding S, Jumel K, Meijer E, Nepogodiev S, Peerling H, Stoddart J (1999) Carbohydr Polym 38:195

    Article  CAS  Google Scholar 

  24. Pavlov G, Korneeva E, Roy R, Michailova N, Cejas Ortega P, Alamino Perez M (1999) Progr Colloid Polym Sci PCPS 109

    Google Scholar 

  25. Tsvetkov VN (1989) Rigid-chain polymers. Consultants Bureau, New York

    Google Scholar 

  26. Yanaki T, Norisuye T, Fujita H (1980) Macromolecules 13:345

    Article  Google Scholar 

  27. Geiduschek EP, Holtzer A (1958) Adv Biol Med Phys 6:431

    CAS  Google Scholar 

  28. Crothers DM, Zimm BH (1965) J Mol Biol 12:525

    Article  CAS  Google Scholar 

  29. Aten JBT, Cohen JA (1965) J Mol Biol 12:537

    CAS  Google Scholar 

  30. Eigner J, Doty P (1965) J Mol Biol 12:549

    CAS  Google Scholar 

  31. Creeth J, Knight C (1965) Biochim Biophys Acta 102:549

    Article  CAS  Google Scholar 

  32. Sato T, Norisuye T, Fujita H (1984) Macromolecules 17:2696

    Article  CAS  Google Scholar 

  33. Pavlov GM, Kozlov AN, Martchenko GN, Tsvetkov VN (1982) Vysokomol Soedin 24B:284

    Google Scholar 

  34. Kawahara K, Ohta K, Miyamoto H, Nakamura S (1984) Carbohydr Polym 4:335

    Article  CAS  Google Scholar 

  35. Kato T, Katsuki T, Takahashi A (1984) Macromolecules 17:1726

    Article  CAS  Google Scholar 

  36. Buliga GS, Brant DA (1987) Int J Biol Macromol 9:71

    Article  CAS  Google Scholar 

  37. Nishinari K, Kohyama K, Williams PA, Phillips GO, Burchard W, Ogino K (1991) Macromolecules 24:5590

    Article  CAS  Google Scholar 

  38. Pavlov GM, Korneeva EV, Yevlampieva NP (1994) Int J Biol Macromol 16:318

    Article  CAS  Google Scholar 

  39. Pavlov GM, Michailova NA, Tarabukina EB, Korneeva EV (1995) Prog Colloid Polym Sci 99:109

    Article  CAS  Google Scholar 

  40. Noda J, Saito S, Fujimoto T, Nagasawa M (1967) J Phys Chem 71:4048

    Article  CAS  Google Scholar 

  41. Abe M, Sakato K, Kageyama T, Fukatsu M, Kurata M (1968) Bull Chem Soc Jpn 41:2330

    Article  CAS  Google Scholar 

  42. Kotera A, Saito T, Hamada T (1972) Polym J 3:421

    Article  CAS  Google Scholar 

  43. Noda J, Mizutani K, Kato T (1977) Macromolecules 10:618

    Article  CAS  Google Scholar 

  44. Peeters FAH, Smits HJE (1981) Bull Soc Chim Belg 90:111

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Pavlov .

Editor information

Helmut Cölfen

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Pavlov, G.M., Harding, S.E., Rowe, A.J. (1999). Normalized scaling relations as a natural classification of linear macromolecules according to size. In: Cölfen, H. (eds) Analytical Ultracentrifugation V. Progress in Colloid and Polymer Science, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48703-4_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-48703-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66175-7

  • Online ISBN: 978-3-540-48703-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics