Advertisement

VSDITLU: A Verifiable Symbolic Definite Integral Table Look-Up

  • A. A. Adams
  • H. Gottliebsen
  • S. A. Linton
  • U. Martin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1632)

Abstract

We present a verifiable symbolic definite integral table lookup: a system which matches a query, comprising a definite integral with parameters and side conditions, against an entry in a verifiable table and uses a call to a library of facts about the reals in the theorem prover PVS to aid in the transformation of the table entry into an answer. Our system is able to obtain correct answers in cases where standard techniques implemented in computer algebra systems fail. We present the full model of such a system as well as a description of our prototype implementation showing the efficacy of such a system: for example, the prototype is able to obtain correct answers in cases where computer algebra systems [CAS] do not. We extend upon Fateman’s web-based table by including parametric limits of integration and queries with side conditions.

Keywords

Correct Answer Theorem Prove Computer Algebra Computer Algebra System Side Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGLM99.
    A. A. Adams, H. Gottliebsen, S. A. Linton, and U. Martin. A Verifiable Symbolic Definite Integral Table Look-Up. Technical Report CS/99/3, University of St Andrews, 1999.Google Scholar
  2. Bri97.
    E. Brinksma, editor. Tools and Algorithms for the Construction and Analysis of Systems (TACAS’ 97). Springer-Verlag LNCS 1217, 1997.Google Scholar
  3. Bro97.
    M. Bronstein. Symbolic integration I. Springer-Verlag, Berlin, 1997. Transcendental functions.zbMATHGoogle Scholar
  4. Bro98.
    C. W. Brown. Simplification of truth-invariant cylindrical algebraic decompositions. In Gloor [Glo98], pages 295–301.Google Scholar
  5. Bun94.
    A. Bundy, editor. CADE-12: 12th International Conference on Automated Deduction: Proceedings. Springer-Verlag LNAI 814, 1994.Google Scholar
  6. CC94.
    J. Calmet and J. A. Campbell, editors. Integrating Symbolic Mathematical Computation and Artificial Intelligence. Springer-Verlag LNCS 958, 1994.Google Scholar
  7. CL96.
    J. Calmet and C. Limongelli, editors. Design and Implementation of Symbolic Computation Systems, International Symposium, DISCO’96. Springer-Verlag LNCS 1128, 1996.Google Scholar
  8. CZ94.
    E. Clarke and X. Zhao. Combining symbolic computation and theorem proving: Some problems of Ramanujan. In Bundy [Bun94], pages 758–763.Google Scholar
  9. Dav.
    J. H. Davenport. Really Strong Integration Algorithms. In preparation. dB80. N. G. de Bruijn. A Survey of the Project AUTOMATH. In Seldin and Hindley [SH80], pages 579–606.Google Scholar
  10. DGH96.
    S. Dalmas, M. Gaëtano, and C. Huchet. A Deductive Database for Mathematical Formulas. In Calmet and Limongelli [CL96].Google Scholar
  11. DGW97.
    S. Dalmas, M. Gaëtano, and S. Watt. An OpenMath 1.0 Implementation. In Küchlin [Küc97], pages 241–248.Google Scholar
  12. DST93.
    J. H. Davenport, Y. Siret, and E. Tournier. Computer algebra. Academic Press Ltd, London, second edition, 1993.zbMATHGoogle Scholar
  13. Dup98.
    B. Dupée. Using Computer Algebra to Find Singularities of Elementary Real Functions. Available from the author, bjd@maths.bath.ac.uk, 1998.Google Scholar
  14. Dut96.
    B. Dutertre. Elements of Mathematical Analysis in PVS. In von Wright et al. [vWGH96].Google Scholar
  15. EF95.
    T. Einwohner and R. J. Fateman. Searching techniques for Integral Tables. In Levelt [Lev95], pages 133–139.Google Scholar
  16. FE.
    R. J. Fateman and T. Einwohner. TILU Table of Integrals Look Up. Web Service. http://http.cs.berkeley.edu/~fateman/htest.html. 126 A. A. Adams et al.
  17. FP98.
    J. Fleuriot and L. Paulson. A combination of nonstandard analysis and geometry theorem proving with application to Newton’s Principia. In Kirchner and Kirchner [KK98], pages 3–16.Google Scholar
  18. GH61.
    W. Groëbner and N. Hofreiter. Integraltafel. Springer-Verlag, Vienna, 1961.zbMATHGoogle Scholar
  19. Glo98.
    O. Gloor, editor. Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation. ACM Press, 1998.Google Scholar
  20. Har98.
    J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.Google Scholar
  21. HC94.
    K. Homann and J. Calmet. Combining theorem proving and symbolic mathematical computing. In Calmet and Campbell [CC94], pages 18–29.Google Scholar
  22. Hec96.
    A. Heck. Introduction to Maple. Springer-Verlag, New York, second edition, 1996.zbMATHGoogle Scholar
  23. HT94.
    J. Harrison and L. Théry. Extending the HOL theorem prover with a computer algebra system to reason about the reals. In Joyce and Seger [JS94], pages 174–185.Google Scholar
  24. JS92.
    R. D. Jenks and R. S. Sutor. AXIOM. Springer-Verlag, 1992.Google Scholar
  25. JS94.
    J. J. Joyce and C-J. H. Seger, editors. Higher order logic theorem proving and its applications, Berlin, 1994. Springer-Verlag LNCS 780.zbMATHGoogle Scholar
  26. KG68.
    M. Klerer and F. Grossman. Error Rates in Tables of Indefinite Integrals. Journal of the Industrial Mathematics Society, 18:31–62, 1968.MathSciNetGoogle Scholar
  27. KK98. C. Kirchner and H. Kirchner, editors. CADE-15: 15th International Conference on Automated Deduction: Proceedings. Springer-Verlag LNAI 1421, 1998.Google Scholar
  28. KKS96.
    M. Kerber, M. Kohlhase, and V. Sorge. Integrating Computer Algebra with Proof Planning. In Calmet and Limongelli [CL96].Google Scholar
  29. Küc97.
    W. W. Küchlin, editor. Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation. ACM Press, 1997.Google Scholar
  30. Lev95.
    A. H. M. Levelt, editor. Proceedings of the 6th International Symposium on Symbolic and Algebraic Computation, ISSAC’ 95. Springer-Verlag LNCS 1004, 1995.Google Scholar
  31. Mar98.
    U. Martin. Computers, Reasoning and Mathematical Practice. In Computational Logic, NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 1998.Google Scholar
  32. ORS97.
    S. Owre, J. Rushby, and N. Shankar. Integration in PVS: Tables, Types, and Model Checking. In Brinksma [Bri97], pages 366–383.Google Scholar
  33. SH80.
    J. P. Seldin and J. R. Hindley, editors. To H.B. Curry: essays on combinatory logic, lambda calculus and formalism. Academic Press, 1980.Google Scholar
  34. Sto91.
    D. Stoutemyer. Crimes and misdemeanours in the computer algebra trade. Notices of the AMS, 38:779–785, 1991.Google Scholar
  35. Thé98.
    L. Théry. A Certified Version of Buchberger’s Algorithm. In Kirchner and Kirchner [KK98], pages 349–364.Google Scholar
  36. Try78.
    A. Trybulec. The Mizar-QC 6000 logic information language. ALCC Bulletin, 6:136–140, 1978.Google Scholar
  37. vWGH96.
    J. von Wright, J. Grundy, and J. Harrison, editors. Theorem Proving in Higher Order Logics: 9th International Conference. Springer-Verlag LNCS 1125, 1996.zbMATHGoogle Scholar
  38. Wol.
    Wolfram Research Inc. The integrator: the power to do integrals as the world has never seen before, http://www.integrals.com.
  39. ZKR96.
    D. Zwillinger, S. G. Krantz, and K. H. Rosen, editors. CRC standard mathematical tables and formulae. CRC Press, Boca Raton, FL, 30th edition, 1996.zbMATHGoogle Scholar
  40. Zwi98.
    D. Zwillinger. Standard Math Interactive. CD-ROM, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • A. A. Adams
    • 1
  • H. Gottliebsen
    • 1
  • S. A. Linton
    • 1
  • U. Martin
    • 1
  1. 1.Department of Computer ScienceUniversity of St AndrewsScotland

Personalised recommendations