A Confluent Connection Calculus

  • Peter Baumgartner
  • Norbert Eisinger
  • Ulrich Furbach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1632)


This work1 is concerned with basic issues of the design of calculi and proof procedures for first-order connection methods and tableaux calculi. Proof procedures for these type of calculi developed so far suffer from not exploiting proof confluence, and very often unnecessarily rely on a heavily backtrack oriented control regime.

As a new result, we present a variant of a connection calculus and prove its strong completeness. This enables the design of backtrack-free contro regimes. To demonstrate that the underlying fairness condition is reasonably implementable we define an effective search strategy.


Inference Rule Variant Step Open Path Automate Theorem Prove Proof Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Baader and K. U. Schulz. Unification Theory. In W. Bibel and P. H. Schmitt, editors, Automated Deduction. A Basis for Applications. Kluwer, 1998.Google Scholar
  2. 2.
    P. Baumgartner. Hyper Tableaux — The Next Generation. In H. de Swaart, editor, Automated Reasoning with Analytic Tableaux and Related Methods. LNAI 1397, Springer, 1998. 4 This strategy resembles much a tableau procedure-one that takes advantage of confluence, however.Google Scholar
  3. 3.
    P. Baumgartner, N. Eisinger, and U. Furbach. A Confluent Connection Calculus. Fachberichte Informatik 23–98, Universität Koblenz-Landau, Universität Koblenz-Landau, D-56075 Koblenz, 1998.Google Scholar
  4. 4.
    P. Baumgartner, U. Furbach, and I. Niemelä. Hyper Tableaux. In Proc. JELIA 96, LNAI 1126. Springer, 1996.Google Scholar
  5. 5.
    B. Beckert and J. Posegga. leanTAP: Lean tableau-based deduction. Journal of Automated Reasoning, 15(3):339–358, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    W. Bibel. Automated Theorem Proving. Vieweg, 2nd edition, 1987.Google Scholar
  7. 7.
    J.-P. Billon. The Disconnection Method. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Theorem Proving with Analytic Tableaux and Related Methods, LNAI 1071. Springer, 1996.Google Scholar
  8. 8.
    F. Bry and N. Eisinger. Unit resolution tableaux. Research Report PMS-FB-1996-2, Institut für Informatik, LMU München, 1996.Google Scholar
  9. 9.
    M. Fitting. First Order Logic and Automated Theorem Proving. Texts and Monographs in Computer Science. Springer, 1990.Google Scholar
  10. 10.
    H. Fujita and R. Hasegawa. A Model Generation Theorem Prover in KL1 using a Ramified-Stack Algorithm. In Proc.8th of the Eighth International Conference on Logic Programming, pages 535–548, Paris, France, 1991.Google Scholar
  11. 11.
    R. Hähnle, B. Beckert, and S. Gerberding. The Many-Valued Theorem Prover 3TAP. Interner Bericht 30/94, Universität Karlsruhe, 1994.Google Scholar
  12. 12.
    R. Hähnle and S. Klingenbeck. A-Ordered Tableaux. Journal of Logic and Computation, 6(6):819–833, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    R. Hähnle and C. Pape. Ordered tableaux: Extensions and applications. In D. Galmiche, editor, Automated Reasoning with Analytic Tableaux and Related Methods, LNAI 1227, pages 173–187. Springer, 1997.Google Scholar
  14. 14.
    S. Klingenbeck and R. Hähnle. Semantic tableaux with ordering restrictions. In A. Bundy, editor, CADE 12, LNAI 814, pages 708–722. Springer, 1994.Google Scholar
  15. 15.
    D. Loveland. Mechanical Theorem Proving by Model Elimination. JACM, 15(2), 1968.Google Scholar
  16. 16.
    R. Manthey and F. Bry. SATCHMO: a theorem prover implemented in Prolog. In E. Lusk and R. Overbeek, editors, CADE 9, LNCS 310, pages 415–434. Springer, 1988.Google Scholar
  17. 17.
    D. A. Plaisted and Y. Zhu. Ordered Semantic Hyper Linking. In Proceedings of AAAI-97, 1997.Google Scholar
  18. 18.
    D. Prawitz. An improved proof procedure. Theoria, 26:102–139, 1960.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Voronkov. Strategies in rigid-variable methods. In IJCAI 97, Nagoya, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Peter Baumgartner
    • 1
  • Norbert Eisinger
    • 1
  • Ulrich Furbach
    • 1
  1. 1.Institut für InformatikUniversität Koblenz-LandauGermany

Personalised recommendations