Skip to main content

Tractable Transformations from Modal Provability Logics into First-Order Logic

  • Conference paper
  • First Online:
Automated Deduction — CADE-16 (CADE 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1632))

Included in the following conference series:

Abstract

We define a class of modal logics LF by uniformly extending a class of modal logics L. Each logic L is characterised by a class of first-order definable frames, but the corresponding logic LF is sometimes characterised by classes of modal frames that are not first-order definable. The class LF includes provability logics with deep arithmetical interpretations. Using Belnap’s proof-theoretical framework Display Logic we characterise the “pseudo-displayable” subclass of LF and show how to define polynomial-time transformations from each such LF into the corresponding L, and hence into first-order classical logic. Theorem provers for classical first-order logic can then be used to mechanise deduction in these “psuedo-displayable second order” modal logics.

Visit to ARP supported by an Australian Research Council International Fellowship.

Supported by an Australian Research Council Queen Elizabeth II Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Auffray, P. Enjalbert, and J.-J. Herbrard. Strategies for modal resolution: results and problems. Journal of Automated Reasoning, 6:1–38, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Avron. On modal systems having arithmetical interpretations. Journal of Symbolic Logic, 49(3):935–942, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Belnap. Display logic. Journal of Philosophical Logic, 11:375–417, 1982.

    MathSciNet  MATH  Google Scholar 

  4. M. Borga and P. Gentilini. On the proof theory of the modal logic Grz. Zeitschrift füur Mathematik Logik und Grundlagen der Mathematik, 32:145–148, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  5. Ph. Balbiani and A. Herzig. A translation from the modal logic of provability into K4. Journal of Applied Non-Classical Logics, 4:73–77, 1994.

    MATH  MathSciNet  Google Scholar 

  6. G. Boolos. The Logic of Provability. Cambridge University Press, 1993.

    Google Scholar 

  7. S. Demri and R. Goré. An O((n.log n)3)-time transformation from Grz into decidable fragments of classical first-order logic. In Selected papers of FTP’98, Vienna. LNAI, Springer-Verlag, 1999. to appear.

    Google Scholar 

  8. S. Demri and R. Goré. Theoremhood preserving maps as a characterisation of cut elimination for provability logics. Technical report, A.R.P., A.N.U., 1999. Forthcoming.

    Google Scholar 

  9. G. d’Agostino, A. Montanari, and A. Policriti. A set-theoretical translation method for polymodal logics. Journal of Automated Reasoning, 15:317–337, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Fitting. Proof methods for modal and intuitionistic logics. D. Reidel Publishing Co., 1983.

    Google Scholar 

  11. H. Ganzinger, U. Hustadt, and R. Meyer, C. Schmidt. A resolution-based decision procedure for extensions of K4. In 2nd Workshop on Advances in Modal Logic (AiML’98), Uppsala, Sweden, October 1998. to appear.

    Google Scholar 

  12. R. Goré.Tableaux methods for modal and temporal logics. In M. d’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableaux Methods. Kluwer, Dordrecht, 1999. To appear.

    Google Scholar 

  13. A. Herzig. Raisonnement automatique en logique modale et algorithmes d’unification. PhD thesis, Université P. Sabatier, Toulouse, 1989.

    Google Scholar 

  14. U. Hustadt and R. Schmidt. On evaluating decision procedures for modal logic. In IJCAI-15, pages 202–207. Morgan Kaufmann, 1997.

    Google Scholar 

  15. M. Kracht. Power and weakness of the modal display calculus. In H. Wansing, editor, Proof theory of modal logic, pages 93–121. Kluwer Academic Publishers, 1996.

    Google Scholar 

  16. D. Leivant. On the proof theory of the modal logic for arithmetical provability. Journal of Symbolic Logic, 46(3):531–538, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Massacci. Strongly analytic tableaux for normal modal logics. In A. Bundy, editor, CADE-12, pages 723–737. LNAI 814, July 1994.

    Google Scholar 

  18. G. Mints. Gentzen-type and resolution rules part I: propositional logic. In P. Martin-Löf and G. Mints, editors, International Conference on Computer Logic, Tallinn, pages 198–231. LNCS 417, 1988.

    Google Scholar 

  19. Ch. Morgan. Methods for automated theorem proving in non classical logics. IEEE Transactions on Computers, 25(8):852–862, 1976.

    Article  MATH  Google Scholar 

  20. A. Nonnengart and A. Szalas. A fixpoint approach to second-order quantifier elimination with applications to correspondence theory. In E. Or lowska, editor, Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, pages 89–108. Physica Verlag, 1998.

    Google Scholar 

  21. H.J. Ohlbach. A resolution calculus for modal logics. In CADE-9, pages 500–516. LNCS 310, 1988.

    Google Scholar 

  22. H.J. Ohlbach. Combining Hilbert style and semantic reasoning in a resolution framework. In C. Kirchner and H. Kirchner, editors, CADE-15, Lindau, Germany, pages 205–219. LNAI 1421, 1998.

    Google Scholar 

  23. Ch. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.

    Google Scholar 

  24. H. Sahlqvist. Completeness and correspondence in the first and second order semantics for modal logics. In S. Kanger, editor, 3rd Scandinavian Logic Symposium, pages 110–143. North Holland, 1975.

    Google Scholar 

  25. R. Schmidt. Decidability by resolution for propositional modal logics. Journal of Automated Reasoning, 1999. To appear.

    Google Scholar 

  26. G. Sambin and S. Valentini. A modal sequent calculus for a fragment of arithmetic. Studia Logica, 39:245–256, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  27. G. Sambin and S. Valentini. The modal logic of provability. The sequential approach. Journal of Philosophical Logic, 11:311–342, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Valentini. The modal logic of provability: cut-elimination. Journal of Philosophical Logic, 12:471–476, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Wansing. Sequent calculi for normal modal propositional logics. Journal of Logic and Computation, 4(2):125–142, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Wansing. Displaying Modal Logic, volume 3 of Trends in Logic. Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demri, S., Goré, R. (1999). Tractable Transformations from Modal Provability Logics into First-Order Logic. In: Automated Deduction — CADE-16. CADE 1999. Lecture Notes in Computer Science(), vol 1632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48660-7_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-48660-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66222-8

  • Online ISBN: 978-3-540-48660-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics