System Description: CutRes 0.1: Cut Elimination by Resolution

  • Matthias Baaz
  • Alexander Leitsch
  • Georg Moser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1632)


CutRes is a system which takes as input an LK-proof with arbitrary cuts and skolemized end-sequent and gives as output an LK- proof with atomic cuts only. The elimination of cuts is performed in the following way: An unsatisfiable set of clauses C is assigned to a given LK-proof П. Any resolution refutation ψ of C then serves as a skeleton for an LK-proof Σ of the original end-sequent, containing only atomic cuts; Σ can be constructed from ψ and П by projections. Note, that a proof with atomic cuts provides the same information as a cut-free proof.


Proof Theory Sequent Calculus Resolution Proof Resolution Refutation Proof Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BL94.
    M. Baaz and A. Leitsch. On Skolemization and proof complexity. Fund. Inform., 20(4):353–379, 1994.zbMATHMathSciNetGoogle Scholar
  2. BL99.
    M. Baaz and A. Leitsch. Cut elimination by resolution. J. Symbolic Computation, 1999. To appear.Google Scholar
  3. Gen34.
    G. Gentzen. Untersuchungen über das logische Schließen I-II. Math. Zeitschrift, 39:176–210, 405-431, 1934.zbMATHCrossRefMathSciNetGoogle Scholar
  4. Gir87.
    J. Y. Girard. Proof Theory and Logical Complexity, volume 1 of Studies in Proof Theory, Monographs. Bibliopolis, Napoli, Italy, 1987.Google Scholar
  5. HB70.
    D. Hilbert and P. Bernays. Grundlagen der Mathematik 2. Spinger Verlag, 1970.Google Scholar
  6. Her71.
    J. Herbrand. Jacques Herbrand: Logical Writings. D. Reidel Publishing Company, Holland, 1971.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Matthias Baaz
    • 1
  • Alexander Leitsch
    • 2
  • Georg Moser
    • 1
  1. 1.Institut f. Algebra und Computermathematik, E118.2Technische Universität WienViennaAustria
  2. 2.Institut f. Computersprachen, E185.2Technische Universität WienViennaAustria

Personalised recommendations