Prefixed Resolution: A Resolution Method for Modal and Description Logics

  • Carlos Areces
  • Hans de Nivelle
  • Maarten de Rijke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1632)


We provide a resolution-based proof procedure for modal and description logics that improves on previous proposals in a number of important ways. First, it avoids translations into large undecidable logics, and works directly on modal or description logic formulas instead. Second, by using labeled formulas it avoids the complexities of earlier propositional resolution-based methods for modal logic. Third, it provides a method for manipulating so-called assertional information in the description logic setting. And fourth, we believe that it combines ideas from the method of prefixes used in tableaux and resolution in such a way that some of the heuristics and optimizations devised in either field are applicable.


Modal Logic Description Logic Resolution Method Reasoning Task Atomic Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Auffray, P. Enjalbert, and J. Hebrard. Strategies for modal resolution: results and problems. Journal of Automated Reasoning, 6(1):1–38, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    F. Baader, B. Hollunder, B. Nebel, H. Profitlich, and E. Franconi. An empirical analysis of optimization techniques for terminological representation systems or: Making KRIS get a move on. Journal of Applied Intelligence, 4:109–132, 1994.CrossRefGoogle Scholar
  3. 3.
    P. Blackburn. Internalizing labeled deduction. Technical Report CLAUS-Report 102, Computerlinguistik, Universität des Saarlandes, 1998.Google Scholar
  4. 4.
    P. Blackburn and M. Tzakova. Hybridizing concept languages. Annals of Mathematics and Artificial Intelligence, 24:23–49, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. Brachman and H. Levesque. The tractability of subsumption in frame-based description languages. In AAAI-84, pages 34–37, 1984.Google Scholar
  6. 6.
    R. Brachman and J. Schmolze. An overview of the KL-ONE knowledge representation system. Cognitive Science, 9(2):171–216, 1985.CrossRefGoogle Scholar
  7. 7.
    D. Calvanese, G. De Giacomo, and M. Lenzerini. Conjunctive query containment in description logics with n-ary relations. In Proc. of DL-97, pages 5–9, June 1997.Google Scholar
  8. 8.
    H. de Nivelle. Ordering refinements of resolution. PhD thesis, Technische Universiteit Delft, Delft. The Netherlands, October 1994.Google Scholar
  9. 9.
    H. de Nivelle and M. de Rijke. Resolution decides the guarded fragment. Submitted for journal publication, 1998.Google Scholar
  10. 10.
    M. de Rijke. Restricted description languages. Unpublished, 1998.Google Scholar
  11. 11.
    F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction in concept languages: from subsumption to instance checking. Journal of Logic and Computation, 4(4):423–452, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    P. Enjalbert and L. Fariñas del Cerro. Modal resolution in clausal form. Theoretical Computer Science, 65(1):1–33, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    L. Fariñas del Cerro. A simple deduction method for modal logic. Information Processing Letters, 14:49–51, April 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    C. Fermüller, A. Leitsch, T. Tammet, and N. Zamov. Resolution methods for the decision problem. Springer-Verlag, Berlin, 1993. LNAI.zbMATHGoogle Scholar
  15. 15.
    I. Horrocks and P. Patel-Schneider. Optimising description logic subsumption. Submitted to the Journal of Logic and Computation, 1998.Google Scholar
  16. 16.
    U. Hustadt and R. Schmidt. Issues of decidability for description logics. Unpublished, 1998.Google Scholar
  17. 17.
    G. Mints. Resolution calculi for modal logics. American Mathematical Society Translations, 143:1–14, 1989.Google Scholar
  18. 18.
    K. Schild. A correspondence theory for terminological logics. In Proc. of the 12th IJCAI, pages 466–471, 1991.Google Scholar
  19. 19.
    M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with complements. Artificial Intelligence, 48:1–26, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    T. Tammet. Using resolution for extending KL-ONE-type languages. In Proc. of the 4th CIKM. ACM Press, November 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Carlos Areces
    • 1
  • Hans de Nivelle
    • 1
  • Maarten de Rijke
    • 1
  1. 1.ILLC, University of AmsterdamTV AmsterdamThe Netherlands

Personalised recommendations