Advertisement

Maslov’s Class K Revisited

  • Ullrich Hustadt
  • Renate A. Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1632)

Abstract

This paper gives a new treatment of Maslov’s class K in the framework of resolution. More specifically, we show that K and the class DK consisting of disjunction of formulae in K can be decided by a resolution refinement based on liftable orderings. We also discuss relationships to other solvable and unsolvable classes.

Keywords

Modal Logic Decision Procedure Function Symbol Predicate Symbol Split Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation, 4(3):217–247, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    L. Bachmair and H. Ganzinger. A theory of resolution. Research report MPI-I-97-2-005, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1997. To appear in J. A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning.Google Scholar
  3. 3.
    H. de Nivelle. Ordering Refinements of Resolution. PhD thesis, Technische Universiteit Delft, The Netherlands, October 1996.zbMATHGoogle Scholar
  4. 4.
    C. Fermüller, A. Leitsch, T. Tammet, and N. Zamov. Resolution Method for the Decicion Problem, volume 679 of LNCS. Springer, 1993.Google Scholar
  5. 5.
    C. Fermüller and G. Salzer. Ordered paramodulation and resolution as decision procedures. In Proc. LPAR’93, volume 698 of LNAI, pages 122–133. Springer, 1993.Google Scholar
  6. 6.
    H. Ganzinger and H. de Nivelle. A superposition decision procedure for the guarded fragment with equality. To appear in Proc. LICS’99. IEEE Computer Soc. Press, 1999.Google Scholar
  7. 7.
    H. Ganzinger, U. Hustadt, C. Meyer, and R. A. Schmidt. A resolution-based decision procedure for extensions of K4. To appear in Advances in Modal Logic, Volume 2. CLSI Publications, 1999.Google Scholar
  8. 8.
    H. Ganzinger, C. Meyer, and M. Veanes. The two-variable guarded fragment with transitive relations. To appear in Proc. LICS’99. IEEE Computer Soc. Press, 1999.Google Scholar
  9. 9.
    G. Gargov and S. Passy. A note on Boolean modal logic. In P. P. Petkov, editor, Mathematical Logic: Proceedings of the 1988 Heyting Summerschool, pages 299–309, New York, 1990. Plenum Press.Google Scholar
  10. 10.
    W. D. Goldfarb. The unsolvability of the Gödel class with identity. Journal of Symbolic Logic, 49:1237–1252, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    U. Hustadt and R. A. Schmidt. Issues of decidability for description logics in the framework of resolution. To appear in R. Caferra and G. Salzer, editors, Proc. FTP’98, LNAI. Springer, 1999.Google Scholar
  12. 12.
    D. G. Kuehner. A note on the relation between resolution and Maslov’s inverse method. In B. Meltzer and D. Michie, editors, Machine Intelligence 6, chapter 5, pages 73–76. Edinburgh University Press, 1971.Google Scholar
  13. 13.
    S. Ju. Maslov. The inverse method for establishing deducibility for logical calculi. In V. P. Orevkov, editor, The Calculi of Symbolic Logic I: Proceedings of the Steklov Institute of Mathematics edited by I.G. Petrovskii and S. M. Nikol’skii, number 98 1968, pages 25–96. American Mathematical Soc., 1971.Google Scholar
  14. 14.
    M. Mortimer. On languages with two variables. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 21:135–140, 1975.zbMATHMathSciNetGoogle Scholar
  15. 15.
    C. Weidenbach. Minimal resolution. Research report MPI-I-94-227, Max-Planck-Institut für Informatik, Saarbrücken, Germany, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Ullrich Hustadt
    • 1
  • Renate A. Schmidt
    • 1
  1. 1.Department of ComputingManchester Metropolitan University Chester StreetUK

Personalised recommendations