On the Universal Theory of Varieties of Distributive Lattices with Operators: Some Decidability and Complexity Results

  • Viorica Sofronie-Stokkermans
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1632)


In this paper we establish a link between satisfiability of universal sentences with respect to varieties of distributive lattices with operators and satisfiability with respect to certain classes of relational structures. We use these results for giving a method for translation to clause form of universal sentences in such varieties, and then use results from automated theorem proving to obtain decidability and complexity results for the universal theory of some such varieties.


Distributive Lattice Decision Procedure Complexity Result Predicate Symbol Transitive Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bachmair and H. Ganzinger. Completion of first-order clauses with equality by strict superposition. In St. Kaplan and M. Okada, editors, Proc. 2nd International Workshop on Conditional and Typed Rewriting, Montreal, LNCS 516, pages 162–180, Berlin, 1991. Springer-Verlag.Google Scholar
  2. 2.
    L. Bachmair and H. Ganzinger. Ordered chaining calculi for first-order theories of transitive relations. Journal of the ACM,45(6):1007–1049, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    L. Bachmair, H. Ganzinger, and U. Waldmann. Superposition with simplification as a decision procedure for the monadic class with equality. In G. Gottlob, A. Leitsch, and D. Mundici, editors, Computational Logic and Proof Theory, 3rd Kurt Gödel Colloquium, LNCS 713, pages 83–96. Springer Verlag, 1993.Google Scholar
  4. 4.
    S. Burris and R. McKenzie. Decidability and Boolean Representations. Memoirs of the AMS, Volume 32, Number 246. American Mathematical Society, 1981.Google Scholar
  5. 5.
    S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Graduate Texts in Mathematics. Springer, 1981.Google Scholar
  6. 6.
    S.S. Cosmadakis. Equational Theories and Database Constraints. PhD thesis, Massachusetts Institute of Technology, 1985.Google Scholar
  7. 7.
    B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 1990.Google Scholar
  8. 8.
    H. Ganzinger, U. Hustadt, C. Meyer, and R. Schmidt. A resolution-based decision procedure for extensions of K4. Proceedings of AIML’98, 1999. To appear.Google Scholar
  9. 9.
    R. Goldblatt. Varieties of complex algebras. Annals of Pure and Applied Logic, 44(3):153–301, 1989.CrossRefMathSciNetGoogle Scholar
  10. 10.
    H.B. Hunt, D.J. Rosenkrantz, and P.A. Bloniarz. On the computational complexity of algebra of lattices. SIAM Journal of Computation, 16(1):129–148, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    B. Jónsson and A. Tarski. Boolean algebras with operators, Part I & II. American Journal of Mathematics, 73 & 74:891–939 & 127-162, 1951 & 1952.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    D. McAllester, R. Givan, D. Kozen, and C. Witty. Tarskian set constraints. In Proceedings of the Eleventh Annual IEEE Symposium on Logic In Computer Science, pages 138–151. IEEE Computer Society Press, 1996.Google Scholar
  13. 13.
    J.C.C. McKinsey. The decision problem for some classes of sentences without quantifiers. The Journal of Symbolic Logic, 8(3):61–76, 1943.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    P. Mielniczuk and L. Pacholski. Tarskian set constraints are in NEXPTIME. In Lubos Prim et. al., editor, Proceedings of MFCS’98, LNCS 1450, pages 589–596. Springer Verlag, 1998.Google Scholar
  15. 15.
    H. Priestley. Ordered sets and duality for distributive lattices. Annals of Discrete Mathematics, 23:39–60, 1984.MathSciNetGoogle Scholar
  16. 16.
    H.A. Priestley. Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc., 2:186–190, 1970.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    T. Skolem. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen. Videnskapsselskapets skrifter I, Matematisk-naturvidenskabelig klasse, Videnskab-sakademiet i Kristiania, 4:1–36, 1920. Also in T. Skolem, Select Works in Logic, Scandinavian University Books, Oslo, 1970, pp.103-136.Google Scholar
  18. 18.
    V. Sofronie-Stokkermans. Fibered Structures and Applications to Automated Theorem Proving in Certain Classes of Finitely-Valued Logics and to Modeling Interacting Systems. PhD thesis, RISC-Linz, J.Kepler University Linz, Austria, 1997.Google Scholar
  19. 19.
    V. Sofronie-Stokkermans. Duality and canonical extensions of bounded distributive lattices with operators, and applications to the semantics of non-classical logics I, II. Studia Logica, 1999. To appear.Google Scholar
  20. 20.
    V. Sofronie-Stokkermans. Representation theorems and theorem proving in nonclassical logics. In Proceedings of the 29th IEEE International Symposium on Multiple-Valued Logic. IEEE Computer Sociaty Press, 1999. To appear.Google Scholar
  21. 21.
    G. Struth. Canonical Transformations in Algebra, Universal Algebra, and Logic. PhD thesis, Max-Planck-Institut für Informatik, Saarbrücken, 1998.Google Scholar
  22. 22.
    G. S. Tseitin. On the complexity of derivation in propositional calculus. In Seminars in Mathematics V.A. SteklovMath. Inst., Leningrad, volume 8, pages 115–125. Consultants Bureau, New York-London, 1970. Reprinted in J. Siekmann and G. Wrightson (eds): Automation of Reasoning, Vol. 2, 1983, Springer, pp.466-486.Google Scholar
  23. 23.
    Ch. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER Version 0.42. In M.A. McRobie and J.K. Slaney, editors, Proceedings of CADE-13, LNCS 1104, pages 141–145. Springer Verlag, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Viorica Sofronie-Stokkermans
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations