Advertisement

A Dynamic Programming Approach to Categorial Deduction

  • Philippe de Groote
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1632)

Abstract

We reduce the provability problem of any formula of the Lambek calculus to some context-free parsing problem. This reduction, which is based on non-commutative proof-net theory, allows us to de- rive an automatic categorial deduction algorithm akin to the well-known Cocke-Kasami-Younger parsing algorithm.

Keywords

Transitive Closure Linear Logic Parse Tree Sequent Calculus Dynamic Program Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abrusci. Phase semantics and sequent calculus for pure non-commutative classical linear logic. Journal of Symbolic Logic, 56(4):1403–1451, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    C. Berge. Graphs. North-Holland, second revised edition edition, 1985.Google Scholar
  3. 3.
    A Fleury. La règle d’échange: logique lineaire multiplicative tressée. Thès de Doctorat, spécialité Mathématiques, Université Paris 7, 1996.Google Scholar
  4. 4.
    J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J.-Y. Girard. Quantifiers in linear logic II. Technical Report 19, Equipe de Logique Mathématique, Université de Paris VII, 1991.Google Scholar
  6. 6.
    F. Lamarche and C. Retoré. Proof nets for the Lambek calculus. In M. Abrusci and C. Casadio, editors, Proofs and Linguistic Categories, Proceedings 1996 Roma Workshop. Cooperativa Libraria Universitaria Editrice Bologna, 1996.Google Scholar
  7. 7.
    J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly, 65:154–170, 1958.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Moortgat. Categorial type logic. In J. van Benthem and A. ter Meulen, editors, Handbook of Logic and Language, chapter 2. Elsevier, 1997.Google Scholar
  9. 9.
    G. Morrill. Memoisation of categorial proof nets: parallelism in categorial processing. In V. M. Abrusci and C. Casadio, editors, Proofs and Linguistic Categories, Proceedings 1996 Roma Workshop. Cooperativa Libraria Universitaria Editrice Bologna, 1996.Google Scholar
  10. 10.
    D. Roorda. Resource Logics: proof-theoretical investigations. PhD thesis, University of Amsterdam, 1991.Google Scholar
  11. 11.
    D. N. Yetter. Quantales and (non-commutative) linear logic. Journal of Symbolic Logic, 55:41–64, 1990.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Philippe de Groote
    • 1
  1. 1.LORIA UMR no 7503 — INRIAVandœuvre lès Nancy CedexFrance

Personalised recommendations