Advertisement

A Revised Version of CRYPTON: CRYPTON V1.0

  • Chae Hoon Lim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1636)

Abstract

The block cipher CRYPTON has been proposed as a candidate algorithm for the Advanced Encryption Standard (AES). To fix some minor weakness in the key schedule and to remove some undesirable properties in S-boxes, we made some changes to the AES proposal, i.e., in the S-box construction and key scheduling. This paper presents the revised version of CRYPTON and its preliminary analysis.

Keywords

Smart Card Block Cipher Advance Encryption Standard Algebraic Attack Linear Cryptanalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Biham, A. Biryukov and A. Shamir, Cryptanalysis of Skipjack reduced to 31 rounds, In Advances in Cryptology-EUROCRYPT’99, Springer-Verlag, 1999.Google Scholar
  2. 2.
    E. Biham, A. Biryukov and A. Shamir, Miss in the middle attacks on IDEA, Khufu, and Khafre, in this proceedings.Google Scholar
  3. 3.
    E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems, Journal of Cryptology, v. 4, 1991, pp. 3–72.Google Scholar
  4. 4.
    J. Borst, Weak keys of CRYPTON, public comment submited to the NIST, 1998.Google Scholar
  5. 5.
    C. D’Halluin, G. Bijnens, V. Rijmen and B. Preenel, Attack on six rounds of CRYPTON, in this proceedings.Google Scholar
  6. 6.
    J. Daemen, L. Knudsen and V. Rijmen, The block cipher Square, In Fast Software Encryption, LNCS 1267, Springer-Verlag, 1997, pp.149–171.CrossRefGoogle Scholar
  7. 7.
    C. Harpes, G. Kramer and J. Massey, A generalization of linear cryptanalysis and the applicability of Matsui’s piling-up lemma, In Advances in Cryptology-EUROCRYPT’95, LNCS 921, Springer-Verlag, 1995, pp.24–38.Google Scholar
  8. 8.
    C. Harpes and J. Massey, Partitioning cryptanalysis, In Fast Software Encryption, LNCS 1267, Springer-Verlag, 1997, pp.13–27.CrossRefGoogle Scholar
  9. 9.
    M. Hellman and S. Langford, Differential-linear cryptanalysis, In Advances in Cryptology-CRYPTO’94, LNCS 839, Springer-Verlag, 1994, pp.26–39.Google Scholar
  10. 10.
    H.M. Heys and S.E. Tavares, Substitution-permutation networks resistant to differential and linear cryptanalysis, J. Cryptology, 9(1), 1996, pp.1–19.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Jakobsen, Cryptanalysis of block ciphers with probabilistic non-linear relations of low-degree, In Advances in Cryptology-CRYPTO’98, LNCS 1462, Springer-Verlag, 1998, pp.212–222.Google Scholar
  12. 12.
    T. Jakobsen and L.R. Knudsen, The interpolation attack on block ciphers, In Fast Software Encryption, LNCS 1267, Springer-Verlag, 1997, pp.28–40.CrossRefGoogle Scholar
  13. 13.
    J. Kelsey, B. Schneier and D. Wagner, Key-schedule cryptanalysis of IDEA, DES, GOST, SAFER, and triple-DES, In Advances in Cryptology-CRYPTO’96, LNCS 1109, Springer-Verlag, 1996, pp.237–252.Google Scholar
  14. 14.
    J. Kelsey, B. Schneier and D. Wagner, Related-key cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA, In Information and Communications Security, LNCS 1334, Springer-Verlag, 1997, pp.233–246.CrossRefGoogle Scholar
  15. 15.
    L.R. Knudsen, Truncated and higher order differentials, In Fast Software Encryption, LNCS 1008, Springer-Verlag, 1995, pp.196–211.Google Scholar
  16. 16.
    L.R. Knudsen and T.A. Berson, Truncated differentials of SAFER, In Fast Software Encryption, LNCS 1039, Springer-Verlag, 1996, pp.15–26.Google Scholar
  17. 17.
    B.S. Kaliski Jr. and M.J.B. Robshaw, Linear cryptanalysis using multiple linear approximations, In Advances in Cryptology-CRYPTO’94, LNCS 839, Springer-Verlag, 1994, pp.26–39.Google Scholar
  18. 18.
    B.S. Kaliski Jr. and M.J.B. Robshaw, Linear cryptanalysis using multiple linear approximations and FEAL, In Fast Software Encryption, LNCS 1008, Springer-Verlag, 1995, pp.249–264.Google Scholar
  19. 19.
    L. Knudsen and M.J.B. Robshaw, Non-linear approximations in linear cryptanalysis, In Advances in Cryptology-EUROCRYPT’96, LNCS 1070, Springer-Verlag, 1996, pp.252–267.Google Scholar
  20. 20.
    X. Lai, On the design and security of block ciphers, PhD thesis, ETH, Zurich, 1992.Google Scholar
  21. 21.
    X. Lai and J.L. Massey, Markov ciphers and differential cryptanalysis, In Advances in Cryptology-EUROCRYPT’91, LNCS 547, Springer-Verlag, 1991, pp.17–38.Google Scholar
  22. 22.
    C.H. Lim, CRYPTON: A new 128-bit block cipher, NIST AES Proposal, June 1998.Google Scholar
  23. 23.
    M. Matsui, Linear cryptanalysis method for DES cipher, In Advances in Cryptology-EUROCRYPT’93, LNCS 765, Springer-Verlag, 1994, pp.386–397.Google Scholar
  24. 24.
    D. Wagner, The boomerang attack, in this proceedings.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Chae Hoon Lim
    • 1
  1. 1.Information & Communications Research CenterFuture Systems, Inc.SeoulKorea

Personalised recommendations