Skip to main content

Uncertainty Management for Spatial Datain Databases: Fuzzy Spatial Data Types

  • Conference paper
  • First Online:
Advances in Spatial Databases (SSD 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1651))

Included in the following conference series:

Abstract

In many geographical applications there is a need to model spatial phenomena not simply by sharply bounded objects but rather through vague concepts due to indeterminate boundaries. Spatial database systems and geographical information systems are currently not able to deal with this kind of data. In order to support these applications, for an important kind of vagueness called fuzziness, we propose an abstract, conceptual model of so-called fuzzy spatial data types (i.e., a fuzzy spatial algebra) introducing fuzzy points, fuzzy lines, and fuzzy regions. This paper* focuses on defining their structure and semantics. The formal framework is based on fuzzy set theory and fuzzy topology.

This research was partially supported by the CHOROCHRONOS project, funded by the EU under the Training and Mobility of Researchers Programme, contract no. ERB FMRX-CT96-0056.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Altman. Fuzzy Set Theoretic Approaches for Handling Imprecision in Spatial Analysis. Int. Journal of Geographical Information Systems, 8(3):271–289, 1994.

    Article  Google Scholar 

  2. P.A. Burrough and A.U. Frank, editors. Geographic Objects with Indeterminate Boundaries, volume 2 of GISDATA Series. Taylor & Francis, 1996.

    Google Scholar 

  3. M. Blakemore. Generalization and Error in Spatial Databases. Cartographica, 21, 1984.

    Google Scholar 

  4. P.A. Burrough. Natural Objects with Indeterminate Boundaries. In [BF9], pages 3–28, 1996.

    Google Scholar 

  5. E. Clementini and P. di Felice. An Algebraic Model for Spatial Objects with Indeterminate Boundaries. In [BF96], pages 153–169, 1996.

    Google Scholar 

  6. A.G. Cohn and N.M. Gotts. The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries. In [BF96], pages 171–187, 1996.

    Google Scholar 

  7. C.L. Chang. Fuzzy Topological Spaces. Journal of Mathematical Analysis and Applications, 24:182–190, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Dutta. Qualitative Spatial Reasoning: A Semi-Quantitative Approach Using Fuzzy Logic. 1st Int. Symp. on the Design and Implementation of Large Spatial Databases (SSD’89), Springer-Verlag, LNCS 409:345–364, 1989.

    Google Scholar 

  9. S. Dutta. Topological Constraints: A Representational Framework for Approximate Spatial and Temporal Reasoning. 2nd Int. Symp. on Advances in Spatial Databases (SSD’91), Springer-Verlag, LNCS 525:161–180, 1991.

    Google Scholar 

  10. M.J. Egenhofer, E. Clementini, and P. di Felice. Topological Relations between Regions with Holes. Int. Journal of Geographical Information Systems, 8(2):128–142, 1994.

    Google Scholar 

  11. M. Erwig and M. Schneider. Partition and Conquer. 3rd Int. Conf. on Spatial Information Theory (COSIT’97), Springer-Verlag, LNCS 1329:389–408, 1997.

    Google Scholar 

  12. M. Erwig and M. Schneider. Vague Regions. 5th Int. Symp. on Advances in Spatial Databases (SSD’97), Springer-Verlag, LNCS 1262:298–320, 1997.

    Google Scholar 

  13. J.T. Finn. Use of the Average Mutual Information Index in Evaluating Classification Error and Consistency. Int. Journal of Geographical Information Systems, 7(4):349–366, 1993.

    Article  Google Scholar 

  14. S. Gaal. Point Set Topology. Academic Press, 1964.

    Google Scholar 

  15. R.H. Güting and M. Schneider. Realm-Based Spatial Data Types: The ROSE Algebra. VLDB Journal, 4:100–143, 1995.

    Article  Google Scholar 

  16. V.J. Kollias and A. Voliotis. Fuzzy Reasoning in the Development of Geographical Information Systems. Int. Journal of Geographical Information Systems, 5(2):209–223, 1991.

    Article  Google Scholar 

  17. P. Lagacherie, P. Andrieux, and R. Bouzigues. Fuzziness and Uncertainty of Soil Boundaries: From Reality to Coding in GIS. In [BF96], pages 275–286, 1996.

    Google Scholar 

  18. F.P. Preparata and M.I. Shamos. Computational Geometry. Springer Verlag, 1985.

    Google Scholar 

  19. M. Schneider. Modelling Spatial Objects with Undetermined Boundaries Using the Realm/ROSE Approach. In [BF96], pages 141–152, 1996.

    Google Scholar 

  20. M. Schneider. Spatial Data Types for Database Systems-Finite Resolution Geometry for Geographic Information Systems, volume LNCS 1288. Springer-Verlag, Berlin Heidelberg, 1997.

    Google Scholar 

  21. R. Shibasaki. A Framework for Handling Geometric Data with Positional Uncertainty in a GIS Environment. GIS: Technology and Applications, pages 21–35, World Scientific, 1993.

    Google Scholar 

  22. R.B. Tilove. Set Membership Classification: A Unified Approach to Geometric Intersection Problems. IEEE Transactions on Computers, C-29:874–883, 1980.

    Article  MathSciNet  Google Scholar 

  23. E.L. Usery. A Conceptual Framework and Fuzzy Set Implementation for Geographic Features. In [BF96], pages 71–85, 1996.

    Google Scholar 

  24. F. Wang. Towards a Natural Language User Interface: An Approach of Fuzzy Query. Int. Journal of Geographical Information Systems, 8(2):143–162, 1994.

    Article  Google Scholar 

  25. M.F. Worboys and P. Bofakos. A Canonical Model for a Class of Areal Spatial Objects. 3rd Int. Symp. on Advances in Spatial Databases (SSD’93), Springer-Verlag, LNCS 692:36–52, 1993.

    Google Scholar 

  26. F. Wang, G.B. Hall, and Subaryono. Fuzzy Information Representation and Processing in Conventional GIS Software: Database Design and Application. Int. Journal of Geographical Information Systems, 4(3):261–283, 1990.

    Article  Google Scholar 

  27. L.A. Zadeh. Fuzzy Sets. Information and Control, 8:338–353, 1965.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schneider, M. (1999). Uncertainty Management for Spatial Datain Databases: Fuzzy Spatial Data Types. In: Güting, R.H., Papadias, D., Lochovsky, F. (eds) Advances in Spatial Databases. SSD 1999. Lecture Notes in Computer Science, vol 1651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48482-5_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-48482-5_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66247-1

  • Online ISBN: 978-3-540-48482-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics