Skip to main content

Threshold Phenomena in Random Lattices and Efficient Reduction Algorithms

  • Conference paper
  • First Online:
Algorithms - ESA’ 99 (ESA 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1643))

Included in the following conference series:

Abstract

Two new lattice reduction algorithms are presented and analyzed. These algorithms, called the Schmidt reduction and the Gram reduction, are obtained by relaxing some of the constraints of the classical LLL algorithm. By analyzing the worst case behavior and the average case behavior in a tractable model, we prove that the new algorithms still produce “good” reduced basis while requiring fewer iterations on average. In addition, we provide empirical tests on random lattices coming from applications, that confirm our theoretical results about the relative behavior of the different reduction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M. The shortest vector problem in L2 is NP-hard for randomized reduction. Elect. Colloq. on Comput. Compl. (1997). (http://www.eccc.unitrier.de/eccc).

  2. Akhavi, A. Analyse comprative d’algorithmes de réduction sur les réseaux aléatoires. PhD thesis, Université de Caen, 1999.

    Google Scholar 

  3. Bender, C., and Orzag, S. Advanced Mathematical Methods for Scientists and Engineers. MacGraw-Hill, NewYork, 1978.

    MATH  Google Scholar 

  4. Daudé, H., and Vallée, B. An upper bound on the average number of iterations of the LLL algorithm. Theoretical Computer Science 123 (1994), 95–115.

    Article  MATH  MathSciNet  Google Scholar 

  5. De Bruijn, N. G. Asymptotic methods in Analysis. Dover, NewYork, 1981.

    MATH  Google Scholar 

  6. Kannan, R. Improved algorithm for integer programming and related lattice problems. In 15th ACM Symp. on Theory of Computing (1983), pp. 193–206.

    Google Scholar 

  7. Kannan, R. Algorithmic geometry of numbers. Ann. Rev. Comput. Sci. 2 (1987), 231–267.

    Article  MathSciNet  Google Scholar 

  8. Knuth, D. E. The Art of Computer Programming, 2nd ed., vol. 2: SeminumericalAlgorithms. Addison-Wesley, 1981.

    Google Scholar 

  9. Lagarias, J. C. The computational complexity of simultaneous diophantine approximation problems. In 23rd IEEE Symp. on Found. of Comput. Sci. (1982), pp. 32–39.

    Google Scholar 

  10. Lagarias, J. C. Solving low-density subset problems. In IEEE Symp. on Found. of Comput. Sci. (1983).

    Google Scholar 

  11. Lenstra, A. K., Lenstra, H. W., and Lovász, L. Factoring polynomials with rational coefficients. Math. Ann. 261 (1982), 513–534.

    Article  Google Scholar 

  12. Lenstra, H. Integer programming with a fixed number of variables. Math. Oper. Res. 8 (1983), 538–548.

    Article  MATH  MathSciNet  Google Scholar 

  13. Schnorr, C. P. A hierarchy of polynomial time lattice basis reduction algorithm. Theoretical Computer Science 53 (1987), 201–224.

    Article  MATH  MathSciNet  Google Scholar 

  14. Schnorr, C. P. Attacking the Chor-Rivest cryptosystem by improved lattice reduction. In Eurocrypt (1995).

    Google Scholar 

  15. Schnorr, C. P., and Euchner, M. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. In Proceedings of the FCT’91 (Altenhof, Germany), LNCS 529 (1991), Springer, pp. 68–85.

    Google Scholar 

  16. Schönhage, A. Factorization of univariate integer polynomials by diophantine approximation and an improved basis reduction algorithm. In Lect. Notes Comput. Sci. (1984), vol. 172, pp. 436–447.

    Google Scholar 

  17. Sedgewick, R., and Flajolet, P. An Introduction to the Analysis of Algorithms. Addison-Wesley Publishing Company, 1996.

    Google Scholar 

  18. Vallée, B. Un probléme central en géométrie algorithmique des nombres: la réduction des réseaux. Autour de l’algorithme LLL. Informatique Théorique et Applications 3 (1989), 345–376.

    Google Scholar 

  19. Vallée, B., Girault, M., and Toffin, P. Howto break Okamoto’s cryptosystem by reducing lattice bases. In Proceedings of Eurocrypt (1988).

    Google Scholar 

  20. Van Emde Boas, P. Another NP-complete problem and the complexity of finding short vectors in a lattice. Rep. 81-04 Math. Inst. Univ. Amsterdam (1981).

    Google Scholar 

  21. Whittaker, E., and Watson, G. A course of Modern Analysis, 4th ed. Cambridge University Press, Cambridge (England), 1927. reprinted 1973.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akhavi, A. (1999). Threshold Phenomena in Random Lattices and Efficient Reduction Algorithms. In: Nešetřil, J. (eds) Algorithms - ESA’ 99. ESA 1999. Lecture Notes in Computer Science, vol 1643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48481-7_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-48481-7_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66251-8

  • Online ISBN: 978-3-540-48481-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics