Robot Map Verification of a Graph World

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1663)


In the map verification problem, a robot is given a (possibly incorrect) map M of the world G with its position and orientation indicated on the map. The task is to find out whether this map, for the given robot position and orientation in the map, is correct for the world G. We consider the world model with a graph G = (V G ,E G ) in which, for each vertex, edges incident to the vertex are ordered cyclically around that vertex. This holds similarly for the map M = (V M ,E M ). The robot can traverse edges and enumerate edges incident on the current vertex, but it cannot distinguish vertices and edges from each other. To solve the verification problem, the robot uses a portable edge marker, that it can put down and pick up as needed. The robot can recognize the edge marker when it encounters it in G. By reducing the verification problem to an exploration problem, verification can be completed in O(|V G | × |E G |) edge traversals (the mechanical cost) with the help of a single vertex marker which can be dropped and picked up at vertices of the graph world [DJMW1],[DSMW2]. In this paper, we show a strategy that verifies a map in O(|V M |) edge traversals only, using a single edge marker, when M is a plane embedded graph, even though G may not be (e.g., G may contain overpasses, tunnels, etc.).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AH]
    Albers, S., Henzinger, M. R.: “Exploring Unknown Environments”, Proc. of the 29th Annual ACM Symposium on Theory of Computing (STOC), (1997) 416–425.Google Scholar
  2. [BCR]
    Baeza-Yates, R.A., Culberson, J.C., Rawlins, G. J. E.: “Searching in the Plane”, Information and Computation. 106 (1993) 234–252.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [BRS]
    Blum, A., Raghavan, P., Schieber, B.: “Navigating in Unfamiliar Geometric Terrain”, Proc. of the 23rd Annual ACM Symposium on Theory of Computing (STOC), (1991) 494–504.Google Scholar
  4. [DJMW1]
    Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: “Robotic Exploration as Graph Construction”, IEEE Trans. on Robotics and Automation 7 (1991) 859–865.CrossRefGoogle Scholar
  5. [DJMW2]
    Dudek, G., Jenkin, M., Milios, E., Wilkes, D.: “Map Validation and Self-location for a Robot with a Graph-like Map”, Robotics and Autonomous Systems, 22(2) (1997) 159–178.CrossRefGoogle Scholar
  6. [DKP]
    Deng, X., Kameda, T., Papadimitriou, C. H.: “How to Learn an Unknown Environment”, Journal of the ACM, 45(2) (1998) 215–245.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [DM]
    Deng, X., Mirzaian, A.: “Competitive Robot Mapping with Homogeneous Markers”, IEEE Trans. on Robotics and Automation 12(4) (1996) 532–542.CrossRefGoogle Scholar
  8. [DP]
    Deng, X., Papadimitriou, C. H.: “Exploring an Unknown Graph”, Proc. of the 31st Annual IEEE Symposium on Foundations of Computer Science (FOCS), (1990) 355–361.Google Scholar
  9. [GMR]
    Guibas, L. J., Motwani, R., Raghavan, P.: “The robot localization problem”, SIAM Journal on Computing 26(4) (1997) 1120–1138.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [GT]
    Gross, J. L., Tucker, T. W.: “Topological Graph Theory”, John Wiley and Sons, New York, (1987).zbMATHGoogle Scholar
  11. [HR]
    Hartsfield, N., Ringel, G.: “Pearls in Graph Theory”, Academic Press, (1990).Google Scholar
  12. [KB]
    Kuipers, B., Byun, Y.: “A Robot Exploration and Mapping Strategy Based on a Semantic Hierarchy of Spatial Representatinos”, Robotics and Autonomous Systems 8 (1991) 47–63.CrossRefGoogle Scholar
  13. [KL]
    Kuipers, B., Levitt, T.: “Navigation and mapping in large-scale space”, AI Mag., (1988) 61–74.Google Scholar
  14. [Kw]
    Kwek, S.: “On a Simple Depth-first Search Strategy for Exploring Unknown Graphs”, Proc. of the 6th International Workshop on Algorithms and Data Structures (WADS), Halifax, Nova Scotia, Canada, (1997) 345–353.Google Scholar
  15. [LL]
    Levitt, T. S., Lawton, D. T.: “Qualitative Navigation for Mobile Robots”, Artificial Intelligence 44 (1990) 305–360.CrossRefGoogle Scholar
  16. [PP]
    Panaite, P., Pelc, A.: “Exploring Unknown Undirected Graphs”, Proc. Of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (1998) 316–322.Google Scholar
  17. [PY]
    Papadimitriou, C. H., Yannakakis, M.: “Shortest paths without a map”, Theoretical Comp. Science 84 (1991) 127–150.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [RS]
    Rivest, R. L., Schapire, R. E.: “Inference of Finite Automata Using Homing Sequences”, Information and Computation 103 (1993) 299–347.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  1. 1.Dept. of Computer ScienceYork UniversityTorontoCanada

Personalised recommendations