On the factorization of RSA-120

  • T. Denny
  • B. Dodson
  • A. K. Lenstra
  • M. S. Manasse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 773)

Abstract

We present data concerning the factorization of the 120-digit number RSA-120, which we factored on July 9, 1993, using the quadratic sieve method. The factorization took approximately 825 MIPS years and was completed within three months real time. At the time of writing RSA-120 is the largest integer ever factored by a general purpose factoring algorithm. We also present some conservative extrapolations to estimate the difficulty of factoring even larger numbers, using either the quadratic sieve method or the number field sieve, and discuss the issue of the crossover point between these two methods.

References

  1. 1.
    Bernstein, D. J., Lenstra, A. K.: A general number field sieve implementation. 103–126 in Lenstra, Jr. H. W. (eds): The development of the number field sieve. Lecture Notes in Math. 1554, Springer-Verlag, Berlin, 1993 [7]CrossRefGoogle Scholar
  2. 2.
    Buhler, J. P., Lenstra, Jr., H. W., Pomerance, C: Factoring integers with the number field sieve. 50–94 in Lenstra, Jr. H. W. (eds): The development of the number field sieve. Lecture Notes in Math. 1554, Springer-Verlag, Berlin, 1993 [7]CrossRefGoogle Scholar
  3. 3.
    Buchmann, J.A., Denny, T. F.: An implementation of the multiple polynomial quadratic sieve, University of Saarbrücken (to appear)Google Scholar
  4. 4.
    Dixon, B., Lenstra, A. K.: Factoring integers using SIMD sieves. Advances in Cryptology, Eurocrypt’ 93, Lecture Notes in Comput. Sci. (to appear)Google Scholar
  5. 5.
    LaMacchia, B.A., Odlyzko, A.M.: Computation of discrete logarithms in prime fields. Designs, Codes and Cryptography 1 (1991) 47–62CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Lenstra, A.K.: Massively parallel computing and factoring. Proceedings Latin’92, Lecture Notes in Comput. Sci. 583 (1992) 344–355Google Scholar
  7. 7.
    Lenstra, A. K., Lenstra, Jr. H. W. (eds): The development of the number field sieve. Lecture Notes in Math. 1554, Springer-Verlag, Berlin, 1993MATHGoogle Scholar
  8. 8.
    Lenstra, A.K., Lenstra, Jr., H.W., Manasse, M.S., Pollard, J.M.: The number field sieve. 11–42 in Lenstra, Jr. H. W. (eds): The development of the number field sieve. Lecture Notes in Math. 1554, Springer-Verlag, Berlin, 1993 [7]CrossRefGoogle Scholar
  9. 9.
    Lenstra, A.K., Lenstra, Jr., H. W., Manasse, M. S., Pollard, J. M.: The factorization of the ninth Fermat number. Math. Comp. 61 (1993) 319–349CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Lenstra, A.K., Manasse, M.S.: Factoring by electronic mail. Advances in Cryptology, Eurocrypt’ 89, Lecture Notes in Comput. Sci. 434 (1990) 355–371Google Scholar
  11. 11.
    Lenstra, A. K., Manasse, M. S.: Factoring with two large primes. Math. Comp. (to appear); extended abstract in: Advances in Cryptology, Eurocrypt’ 90, Lecture Notes in Comput. Sci. 473 (1991) 72–82Google Scholar
  12. 12.
    Pomerance, C: The quadratic sieve factoring algorithm. Lecture Notes in Comput. Sci. 209 (1985) 169–182Google Scholar
  13. 13.
    Pomerance, C., Smith, J. W.: Reduction of huge, sparse matrices over finite fields via created catastrophes. Experiment. Math. 1 (1992) 89–94MATHMathSciNetGoogle Scholar
  14. 14.
    RSA Data Security Corporation Inc., sci.crypt, May 18, 1991; information available by sending electronic mail to challenge-rsa-list@rsa.coiaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • T. Denny
    • 1
  • B. Dodson
    • 2
  • A. K. Lenstra
    • 3
  • M. S. Manasse
    • 4
  1. 1.Lehrstuhl Prof. Buchmann, Fachbereich InformatikUníversität des SaarlandesSaarbrückenGermany
  2. 2.Department of MathematicsLehigh UniversityBethlehemUSA
  3. 3.MRE-2Q334BellcoreMorristownUSA
  4. 4.DEC SRCPalo AltoUSA

Personalised recommendations