On the factorization of RSA-120

  • T. Denny
  • B. Dodson
  • A. K. Lenstra
  • M. S. Manasse
Conference paper

DOI: 10.1007/3-540-48329-2_15

Part of the Lecture Notes in Computer Science book series (LNCS, volume 773)
Cite this paper as:
Denny T., Dodson B., Lenstra A.K., Manasse M.S. (1994) On the factorization of RSA-120. In: Stinson D.R. (eds) Advances in Cryptology — CRYPTO’ 93. CRYPTO 1993. Lecture Notes in Computer Science, vol 773. Springer, Berlin, Heidelberg


We present data concerning the factorization of the 120-digit number RSA-120, which we factored on July 9, 1993, using the quadratic sieve method. The factorization took approximately 825 MIPS years and was completed within three months real time. At the time of writing RSA-120 is the largest integer ever factored by a general purpose factoring algorithm. We also present some conservative extrapolations to estimate the difficulty of factoring even larger numbers, using either the quadratic sieve method or the number field sieve, and discuss the issue of the crossover point between these two methods.

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • T. Denny
    • 1
  • B. Dodson
    • 2
  • A. K. Lenstra
    • 3
  • M. S. Manasse
    • 4
  1. 1.Lehrstuhl Prof. Buchmann, Fachbereich InformatikUníversität des SaarlandesSaarbrückenGermany
  2. 2.Department of MathematicsLehigh UniversityBethlehemUSA
  3. 3.MRE-2Q334BellcoreMorristownUSA
  4. 4.DEC SRCPalo AltoUSA

Personalised recommendations