Multisecret Threshold Schemes

  • Wen-Ai Jackson
  • Keith M. Martin
  • Christine M. O’Keefe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 773)


A threshold scheme is a system that protects a secret (key) among a group of participants in such a way that it can only be reconstructed from the joint information held by some predetermined number of these participants. In this paper we extend this problem to one where there is more than one secret that participants can reconstruct using the information that they hold. In particular we consider the situation where there is a secret s K associated with each k-subset K of participants and s K can be reconstructed by any group of t participants in K (tk). We establish bounds on the minimum amount of information that participants must hold in order to ensure that up to w participants (0 ≤ wnk + t − 1) cannot obtain any information about a secret with which they are not associated. We also discuss examples of systems that satisfy this bound.


Prime Power Access Structure Sharing Scheme Secret Sharing Scheme Threshold Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Benaloh and J. Leichter: Generalized Secret Sharing and Monotone Functions. Advances in Cryptology — Crypto’ 88, Lecture Notes in Comput. Sci. 403 (1990) 27–35Google Scholar
  2. 2.
    G. R. Blakley: Safeguarding cryptographic keys. Proceedings of AFIPS 1979 National Computer Conference 48 (1979) 313–317Google Scholar
  3. 3.
    G. R. Blakley and C. Meadows: Security of Ramp Schemes. Advances in Cryptology — Crypto’ 84, Lecture Notes in Comput. Sci. 196 (1985) 411–431Google Scholar
  4. 4.
    R. Blom: An Optimal Class of Symmetric Key Generation Systems. Advances in Cryptology-Eurocrypt’84, Lecture Notes in Comput. Sci. 209 (1984) 335–338Google Scholar
  5. 5.
    C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro and M. Yung: Perfectly-Secure Key Distribution for Dynamic Conferences. Presented at Crypto’92Google Scholar
  6. 6.
    C. Blundo, A. De Santis and U. Vaccaro: Efficient Sharing of Many Secrets. Proceedings of STACS’ 93, Lec. Notes in Comput. Sci. 665 (1993) 692–703Google Scholar
  7. 7.
    E. F. Brickell and D. M. Davenport: On the Classification of Ideal Secret Sharing Schemes. J. Cryptology 2 (1991) 123–124Google Scholar
  8. 8.
    E. F. Brickell and D. R. Stinson: Some Improved Bounds on the Information Rate of Perfect Secret Sharing Schemes. J. Cryptology 2 (1992) 153–166CrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Ito, A. Saito and T. Nishizeki: Secret Sharing Scheme Realizing General Access Structure. Proceedings IEEE Global Telecom. Conf., Globecom’ 87, IEEE Comm. Soc. Press (1987) 99–102Google Scholar
  10. 10.
    W.-A. Jackson and K. M. Martin: On Ideal Secret Sharing Schemes. PreprintGoogle Scholar
  11. 11.
    W.-A. Jackson, K. M. Martin and C. M. O’Keefe: A construction for multisecret threshold schemes. PreprintGoogle Scholar
  12. 12.
    K. M. Martin: New Secret Sharing Schemes from Old. To appear in J. Combin. Math. Combin. Comput.Google Scholar
  13. 13.
    T. Matsumoto and H. Imai: On the KEY PREDISTRIBUTION SYSTEM: a Practical Solution to the Key Predistribution Problem. Advances in Cryptology: Crypto’ 87, Lecture Notes in Comput. Sci. 293 (1987) 185–193Google Scholar
  14. 14.
    R. J. McEliece and D. V. Sarwate: On Sharing Secrets and Reed Solomon Codes. Comm. ACM 24 (1981) 583–584CrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Shamir: How to Share a Secret. Comm. ACM Vol 22 11 (1979) 612–613CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    G. J. Simmons: An Introduction to Shared Secret and/or Shared Control Schemes and their Application. Contemporary Cryptology: The Science of Information Integrity, IEEE Press (1992)Google Scholar
  17. 17.
    D. R. Stinson: An Explication of Secret Sharing Schemes. Des. Codes Cryptogr. 2 (1992) 357–390CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Wen-Ai Jackson
    • 1
  • Keith M. Martin
    • 1
  • Christine M. O’Keefe
    • 1
  1. 1.Department of Pure MathematicsThe University of AdelaideAdelaideAustralia

Personalised recommendations