Skip to main content

Timed Automata and the Theory of Real Numbers

  • Conference paper
  • First Online:
CONCUR’99 Concurrency Theory (CONCUR 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1664))

Included in the following conference series:

Abstract

A configuration of a timed automaton is given by a control state and finitely many clock (real) values. We show here that the binary reachability relation between configurations of a timed automaton is definable in an additive theory of real numbers, which is decidable. This result implies the decidability of model checking for some properties which cannot be expressed in timed temporal logics and provide with alternative proofs of some known decidable properties. Our proof relies on two intermediate results: 1. Every timed automaton can be effectively emulated by a timed automaton which does not contain nested loops. 2. The binary reachability relation for counter automata without nested loops (called here flat automata) is expressible in the additive theory of integers (resp. real numbers). The second result can be derived from [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Alur. Timed automata. In Verification of Digital and Hybrid Systems, Proc. NATO-ASI Summer School, Antalya, Turkey, 1997. To appear.

    Google Scholar 

  2. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real time. Information and Computation, 104(1):2–24, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Alur, C. Courcoubetis, and T. Henzinger. Computing accumulated delays in real-time systems. In Proc. 5th Conf. on Computer Aided Verification, volume 818 of Lecture Notes in Computer Science, pages 181–193. Springer-Verlag, 1993.

    Google Scholar 

  4. R. Alur and D. Dill. Automata for modeling real-time systems. In Proc. 17th Int. Coll. on Automata, Languages and Programming, Warwick, LNCS 443, pages 322–335. Springer-Verlag, 1990.

    Chapter  Google Scholar 

  5. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuallity. J. ACM, 43:116–146, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Alur and T. Henzinger. A really temporal logic. J. ACM, 41:181–204, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Alur, T. Henzinger, and M. Vardi. Parametric real-time reasoning. In Proc. 25th Annual ACM Symposium on Theory of Computing, 1993.

    Google Scholar 

  9. B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Computer Aided Verification, Proc. 6th Int. Conerence, LNCS, Stanford, June 1994. Springer-Verlag.

    Google Scholar 

  10. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and presburger arithmetic. In A. Hu and M. Vardi, editors, Proc. Computer Aided Verification, volume 1427 of LNCS, pages 268–279, Vancouver, 1998. Springer-Verlag.

    Chapter  Google Scholar 

  11. H. Comon and Y. Jurski. Timed automata and the theory of real numbers. Technical report, LSV Research Report, June 1999. avalaible at http://www.lsv.enscachan.fr/Publis/publis-lsv-index.html.

  12. C. Courcoubetis and M. Yannakakis. Minimal and maximal delay problems in real time systems. In K. Larsen and A. Skou, editors, Proc. CAV 91: Computer Aided Verification, volume 575 of Lecture Notes in Computer Science, pages 399–409. Springer-Verlag, 1991.

    Google Scholar 

  13. L. Fribourg. A closed form evaluation for extending timed automata. Technical Report 1998-02, Laboratoire Spécification et Vérification, ENS Cachan, Mar. 1998.

    Google Scholar 

  14. T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What is decidable about hybrid automata? In Proc. 27th Symposium on Theory of Computing, pages 373–382. ACM Press, 1995.

    Google Scholar 

  15. T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real time systems. Information and Computation, 111(2):193–244, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Laroussinie, K. Larsen, and C. Weise. From timed automata to logic-and back. In Proc. 20th Conf. on Foundations of Computer Science, volume 969 of Lecture Notes in Computer Science, Prag, 1995. Springer-Verlag.

    Google Scholar 

  17. M. Lothaire. Combinatorics on words, volume 17 of Encyclopedia of mathematics and its applications. Cambridge University Press, 1982.

    Google Scholar 

  18. F. Wang. Timing behaviour analysis for real time systems. In Tenth Annual IEEE Symposium on Logic in Computer Science, San Diego, CA, June 1995. IEEE Comp. Soc. Press.

    Google Scholar 

  19. T. Wilke and M. Dickhfer. The automata-theoretic method works for tctl model checking. Technical Report 9811, Inst. f. Informatik u. Prakt. Math., CAU Kiel, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Comon, H., Jurski, Y. (1999). Timed Automata and the Theory of Real Numbers. In: Baeten, J.C.M., Mauw, S. (eds) CONCUR’99 Concurrency Theory. CONCUR 1999. Lecture Notes in Computer Science, vol 1664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48320-9_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-48320-9_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66425-3

  • Online ISBN: 978-3-540-48320-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics