Linear Logic [4] has raised a lot of interest in computer research, especially because of its resource sensitive nature. One line of research studies proof construction procedures and their interpretation as computational models, in the “Logic Programming” tradition. An efficient proof search procedure, based on a proof normalization result called “Focusing”, has been described in [2]. Focusing is described in terms of the sequent system of commutative Linear Logic, which it refines in two steps. It is shown here that Focusing can also be interpreted in the proof-net formalism, where it appears, at least in the multiplicative fragment, to be a simple refinement of the “Splitting lemma” for proof-nets. This change of perspective allows to generalize the Focusing result to (the multiplicative fragment of) any logic where the “Splitting lemma” holds. This is, in particular, the case of the Non-Commutative logic of [1], and all the computational exploitation of Focusing which has been performed in the commutative case can thus be revised and adapted to the non commutative case.
Keywords
- Atomic Formula
- Sequent System
- Linear Logic
- Commutative Case
- Proof Search
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.