Skip to main content

Collaborative Multi-robot Localization

  • Conference paper
  • First Online:
Book cover KI-99: Advances in Artificial Intelligence (KI 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1701))

Included in the following conference series:

Abstract

This paper presents a probabilistic algorithm for collaborative mobile robot localization. Our approach uses a sample-based version of Markov localization, capable of localizing mobile robots in an any-time fashion. When teams of robots localize themselves in the same environment, probabilistic methods are employed to synchronize each robot’s belief whenever one robot detects another. As a result, the robots localize themselves faster, maintain higher accuracy, and high-cost sensors are amortized across multiple robot platforms. The paper also describes experimental results obtained using two mobile robots. The robots detect each other and estimate their relative locations based on computer vision and laser range-finding. The results, obtained in an indoor office environment, illustrate drastic improvements in localization speed and accuracy when compared to conventional single-robot localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Borenstein. Control and kinematic design of multi-degree-of-freedom robotswith compliant linkage. IEEE Transactions on Robotics and Automation, 1995.

    Google Scholar 

  2. J. Borenstein, B. Everett, and L. Feng. Navigating Mobile Robots: Systems and Techniques. A. K. Peters, Ltd., Wellesley, MA, 1996.

    MATH  Google Scholar 

  3. W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide robot. Artificial Intelligence, 2000. accepted for publication.

    Google Scholar 

  4. W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun. The interactive museum tour-guide robot. In Proc. of the National Conference on Artificial Intelligence (AAAI), 1998.

    Google Scholar 

  5. W. Burgard, A. Derr, D. Fox, and A. B. Cremers. Integrating global position estimation and position tracking for mobile robots: the Dynamic Markov Localization approach. In Proc. Of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1998.

    Google Scholar 

  6. W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the absolute position of a mobile robot using position probability grids. In Proc. of the National Conference on Artificial Intelligence (AAAI), 1996.

    Google Scholar 

  7. J. Carpenter, P. Clifford, and P. Fernhead. An improved particle filter for non-linear problems. Technical report, Department of Statistics, University of Oxford, 1997.

    Google Scholar 

  8. I. J. Cox and G. T. Wilfong, editors. Autonomous Robot Vehicles. Springer Verlag, 1990.

    Google Scholar 

  9. F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the condensation algorithm for robust, vision-based mobile robot localization. In Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 1999.

    Google Scholar 

  10. F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for mobile robots. In Proc. of the IEEE International Conference on Robotics & Automation (ICRA), 1999.

    Google Scholar 

  11. D. Fox. Markov Localization: A Probabilistic Framework for Mobile Robot Localization and Naviagation. PhD thesis, Dept. of Computer Science, University of Bonn, Germany, December 1998.

    Google Scholar 

  12. D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization: Efficient position estimation for mobile robots. In Proc. of the National Conference on Artificial Intelligence (AAAI), 1999.

    Google Scholar 

  13. D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A monte carlo algorithm for multi-robot localization. Technical Report CMS-CS-99-120, Carnegie Mellon University, 1999.

    Google Scholar 

  14. D. Fox, W. Burgard, and S. Thrun. Active markov localization for mobile robots. Robotics and Autonomous Systems, 25:195–207, 1998.

    Article  Google Scholar 

  15. J.-S. Gutmann and C. Schlegel. AMOS: Comparison of scan matching approaches for selflocalization in indoor environments. In Proc. of the 1st Euromicro Workshop on Advanced Mobile Robots. IEEE Computer Society Press, 1996.

    Google Scholar 

  16. L. P. Kaelbling, A. R. Cassandra, and J. A. Kurien. Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1996.

    Google Scholar 

  17. D. Koller and R. Fratkina. Using learning for approximation in stochastic processes. In Proc. of the International Conference on Machine Learning (ICML), 1998.

    Google Scholar 

  18. K. Konolige. Markov localization using correlation. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI), 1999.

    Google Scholar 

  19. R. Kurazume and N. Shigemi. Cooperative positioning with multiple robots. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1994.

    Google Scholar 

  20. F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping. Autonomous Robots, 4:333–349, 1997.

    Article  Google Scholar 

  21. P. S. Maybeck. The Kalman filter: An introduction to concepts. In Cox and Wilfong [8].

    Google Scholar 

  22. A. W. Moore, J. Schneider, and K. Deng. Efficient locally weighted polynomial regression predictions. In Proc. of the International Conference on Machine Learning (ICML), 1997.

    Google Scholar 

  23. I. Nourbakhsh, R. Powers, and S. Birchfield. DERVISH an office-navigating robot. AI Magazine, 16(2), Summer 1995.

    Google Scholar 

  24. I. M. Rekleitis, G. Dudek, and E. Milios. Multi-robot exploration of an unknown environment, efficiently reducing the odometry error. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI), 1997.

    Google Scholar 

  25. D. B. Rubin. Using the SIR algorithm to simulate posterior distributions. In M. H. Bernardo, K. M. an DeGroot, D. V. Lindley, and A. F. M. Smith, editors, Bayesian Statistics 3. Oxford University Press, Oxford, UK, 1988.

    Google Scholar 

  26. B. Schiele and J. L. Crowley. Acomparison of position estimation techniques using occupancy grids. In Proc. of the IEEE InternationalConference on Robotics&Automation (ICRA), 1994.

    Google Scholar 

  27. R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable environments. In Proc. of the International Joint Conference on Artificial Intelligence, 1995.

    Google Scholar 

  28. R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in robotics. In I. Cox and G. Wilfong, editors, Autonomous Robot Vehicles. Springer Verlag, 1990.

    Google Scholar 

  29. M. A. Tanner. Tools for Statistical Inference. Springer Verlag, New York, 1993. 2nd edition.

    MATH  Google Scholar 

  30. S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. MINERVA: A second generation mobile tour-guide robot. In Proc. of the IEEE International Conference on Robotics & Automation (ICRA), 1999.

    Google Scholar 

  31. S. Thrun. Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(1):27–71, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fox, D., Burgard, W., Kruppa, H., Thrun, S. (1999). Collaborative Multi-robot Localization. In: Burgard, W., Cremers, A.B., Cristaller, T. (eds) KI-99: Advances in Artificial Intelligence. KI 1999. Lecture Notes in Computer Science(), vol 1701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48238-5_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-48238-5_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66495-6

  • Online ISBN: 978-3-540-48238-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics