Skip to main content

Polygon Evolution by Vertex Deletion

  • Conference paper
  • First Online:
Book cover Scale-Space Theories in Computer Vision (Scale-Space 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1682))

Included in the following conference series:

Abstract

We propose a simple approach to evolution of polygonal curves that is specially designed to fit discrete nature of curves in digi- tal images. It leads to simplification of shape complexity with no blur- ring (i.e., shape rounding) effects and no dislocation of relevant features. Moreover, in our approach the problem to determine the size of discrete steps for numerical implementations does not occur, since our evolution method leads in a natural way to a finite number of discrete evolution steps which are just the iterations of a basic procedure of vertex deletion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bengtsson and J.-O. Eklundh. Shape representation by mutliscale contour approximation. IEEE Trans. Pattern Analysis and Machine Intelligence, 13:85–93, 1991.

    Article  Google Scholar 

  2. A.M. Bruckstein, G. Shapiro, and C. Shaked. Evolutions of planer polygons. Int. J. of of Pattern Recognition and AI, 9:991–1014, 1995.

    Article  Google Scholar 

  3. A. Brunn, U. Weidner, and W. Förstner. Model-based 2d-shape recovery. In Proc. of 17. DAGM Conf. on Pattern Recognition (Mustererkennung), pages 260–268, Bielefeld, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  4. M.A. Grayson. The heat equation shrinks embedded plane curves to round points. Pattern Recognition, 26:285–314, 1987.

    MATH  MathSciNet  Google Scholar 

  5. B. B. Kimia and K. Siddiqi. Geometric heat eequation and nonlinear diffusion of shapes and images. Computer Vision and Image Understanding, 64:305–322, 1996.

    Article  Google Scholar 

  6. B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker. Shapes, shocks, and deformations. i: The components of shape and the reaction-diffusion space. Int. J. Computer Vision, 15:189–224, 1995.

    Article  Google Scholar 

  7. L. J. Latecki, R.-R. Ghadially, R. Lakämper, and U. Eckhardt. Continuity of the discrete curve evolution. In SPIE and SIAM Conf. on Vision Geometry VIII, July 1999, to appear.

    Google Scholar 

  8. L. J. Latecki and R. Lakämper. Convexity rule for shape decomposition based on discrete contour evolution. Computer Vision and Image Understanding, 73:441–454, 1999.

    Article  Google Scholar 

  9. L. J. Latecki, R. Lakämper, and U. Eckhardt. http://www.math.uni-hamburg.de/home/lakaemper/shape.

  10. F. Mokhtarian and A. K. Mackworth. A theory of multiscale, curvature-based shape representation for planar curves. IEEE Trans. PAMI, 14:789–805, 1992.

    Google Scholar 

  11. U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1:244–256, 1972.

    Article  Google Scholar 

  12. J.A. Sethian. Level Set Methods. Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  13. C.-H. Teh and R. T. Chin. On the detection of dominant points on digital curves. IEEE Trans. PAMI, 11:859–872, 1989.

    Google Scholar 

  14. N. Ueda and S. Suzuki. Learning visual models from shape contours using multi-scale convex/concave structure matching. IEEE Trans. PAMI, 15:337–352, 1993.

    Google Scholar 

  15. J. Weickert. A review of nonlinear diffusion filtering. In B. M. ter Haar Romeny, L. Florack, J. Koenderink, and M. Viergever, editors, Scale-Space Theory in Computer Vision, pages 3–28. Springer, Berlin, 1997.

    Google Scholar 

  16. A.P. Witkin. Scale-space filtering. In Proc. IJCAI, volume 2, pages 1019–1022, 1983.

    Google Scholar 

  17. www site. http://www.ee.surrey.ac.uk/research/vssp/imagedb/demo.html.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Latecki, L.J., Lakämper, R. (1999). Polygon Evolution by Vertex Deletion. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds) Scale-Space Theories in Computer Vision. Scale-Space 1999. Lecture Notes in Computer Science, vol 1682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48236-9_35

Download citation

  • DOI: https://doi.org/10.1007/3-540-48236-9_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66498-7

  • Online ISBN: 978-3-540-48236-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics