Time and Space Bounds for Reversible Simulation

Extended Abstract
  • Harry Buhrman
  • John Tromp
  • Paul Vitányi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2076)


We prove a general upper bound on the tradeoff between time and space that suffices for the reversible simulation of irreversible computation. Previously, only simulations using exponential time or quadratic space were known. The tradeoff shows for the first time that we can simultaneously achieve subexponential time and subquadratic space. The boundary values are the exponential time with hardly any extra space required by the Lange-McKenzie-Tapp method and the (log 3)th power time with square space required by the Bennett method. We also give the first general lower bound on the extra storage space required by general reversible simulation. This lower bound is optimal in that it is achieved by some reversible simulations.


Turing Machine Exponential Time Space Bound Extra Space Quadratic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.H. Bennett. Logical reversibility of computation. IBM J. Res. Develop., 17:525–532, 1973.zbMATHMathSciNetGoogle Scholar
  2. 2.
    C.H. Bennett. The thermodynamics of computation—a review. Int. J. Theoret. Phys., 21(1982), 905–940.CrossRefGoogle Scholar
  3. 3.
    C.H. Bennett. Time-space tradeoffs for reversible computation. SIAM J. Comput., 18(1989), 766–776.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    E. Fredkin and T. Toffoli. Conservative logic. Int. J. Theoret. Phys., 21(1982),219–253.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Frank, T. Knight, and N. Margolus, Reversibility in optimally scalable computer architectures, Manuscript, MIT-LCS, 1997 //
  6. 6.
    M.P. Frank and M.J. Ammer, Separations of reversible and irreversible space-time complexity classes, Submitted. //
  7. 7.
    R.W. Keyes, IBM J. Res. Dev., 32(1988), 24–28.CrossRefGoogle Scholar
  8. 8.
    R. Landauer. Irreversibility and heat generation in the computing process. IBM J. Res. Develop., 5:183–191, 1961.MathSciNetzbMATHGoogle Scholar
  9. 9.
    K.J. Lange, P. McKenzie, and A. Tapp, Reversible space equals deterministic space, J. Comput. System Sci., 60:2(2000), 354–367.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    R.Y. Levine and A.T. Sherman, A note on Bennett’s time-space tradeoff for reversible computation, SIAM J. Comput., 19:4(1990), 673–677.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Li and P.M.B. Vitányi, Reversibility and adiabatic computation: trading time and space for energy, Proc. Royal Society of London, Series A, 452(1996), 769–789.Google Scholar
  12. 12.
    M. Li, J. Tromp, and P. Vitányi, Reversible simulation of irreversible computation. Physica D, 120(1998) 168–176.CrossRefGoogle Scholar
  13. 13.
    K. Morita, A. Shirasaki, and Y. Gono, A 1-tape 2-symbol reversible Turing machine, IEEE Trans. IEICE, E72 (1989), 223–228.Google Scholar
  14. 14.
    M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.Google Scholar
  15. 15.
    P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26:5(1997), 1484–1509.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    M. Sipser, Halting space-bounded computation, Theoret. Comp. Sci., 10(1990), 335–338.CrossRefMathSciNetGoogle Scholar
  17. 17.
    R. Williams, Space-Efficient Reversible Simulations, DIMACS REU report, July 2000.

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Harry Buhrman
    • 1
  • John Tromp
    • 1
  • Paul Vitányi
    • 1
  1. 1.CWIAmsterdamThe Netherlands

Personalised recommendations