Skip to main content

Parallel and Blocked Algorithms for Reduction of a Regular Matrix Pair to Hessenberg-Triangular and Generalized Schur Forms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2367))

Abstract

A parallel three-stage algorithm for reduction of a regular matrix pair (A, B) to generalized Schur from (S, T) is presented. The first two stages transform (A, B) to upper Hessenberg-triangular form (H, T) using orthogonal equivalence transformations. The third stage iteratively reduces the matrix in (H, T) form to generalized Schur form. Algorithm and implementation issues regarding the single-/double-shift QZ algorithm are discussed. We also describe multishift strategies to enhance the performance in blocked as well as in parallell variants of the QZ method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Adlerborn, K. Dackland, and B. Kågström. Parallel Two-Stage Reduction of a Regular Matrix Pair to Hessenberg-Triangular Form, In T. Sørvik et.al. (eds.), Applied Parallel Computing. New Paradigms for HPC in Industry and Academia. Springer-Verlag, Lecture Notes in Computer Science, Vol. 1947, pp 92–102, 2001.

    Chapter  Google Scholar 

  2. B. Adlerborn, K. Dackland, and B. Kågström. A Parallel Two-Stage Algorithm for Reduction of a Regular Matrix Pair to Hessenberg-Triangular Form, Report UMINF-02.04, Dept. of Computing Science, Umeå University, SE-901 87 Umeå, 2002.

    Google Scholar 

  3. E. Anderson, Z. Bai, C. Bischof. J. Demmel, J. Dongarra, J. DuCroz, A. Green-baum, S. Hammarling, A. McKenny, S. Ostrouchov and D. Sorensen. LAPACK User’s Guide. Third Edition. SIAM Publications, 1999.

    Google Scholar 

  4. Z. Bai and J. Demmel. On a Block Implementation of Hessenberg Multishift QR Iteration. International Journal of High Speed Computing 1:1, 1989, pp 97–112.

    Article  MATH  Google Scholar 

  5. S. Blackford, J. Choi, A. Clearly, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petit, K. Stanley, D. Walker, and R.C. Whaley. ScaLAPACK Users’ Guide. SIAM Publications, Philadelphia, 1997.

    Book  MATH  Google Scholar 

  6. D. Boley. A Parallel Method for the Generalized Eigenvalue Problem. TR 84-21, Computer Science Department, University of Minnesota, Minneapolis, USA, 1984.

    Google Scholar 

  7. K. Braman, R. Byers and R. Mathias. The Multishift QR Algorithm. Part I: Maintaining Well-Focused Shifts and Level 3 Performance. SIAM J. Matrix Anal. Appl., 23:4 (2002), pp. 929–947.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Braman, R. Byers and R. Mathias. The Multishift QR Algorithm. Part II: Aggressive Early Deflation SIAM J. Matrix Anal. Appl., 23:4 (2002), pp. 948–973.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Dackland and B. Kågström. An Hierarchical Approach for Performance Analysis of ScaLAPACK-based Routines Using the Distributed Linear Algebra Machine. In Wasniewski et.al., editors, Applied Parallel Computing in Industrial Computation and Optimization, PARA96, Lecture Notes in Computer Science, Springer, Vol. 1184, pages 187–195, 1996.

    Google Scholar 

  10. K. Dackland and B. Kågström. A ScaLAPACK-Style Algorithm for Reducing a Regular Matrix Pair to Block Hessenberg-Triangular Form. In Kågström et.al., editors, Applied Parallel Computing: Large Scale Scientific and Industrial Problems, PARA98, Lecture Notes in Computer Science, Springer, Vol. 1541, pages 95–103, 1998.

    Chapter  Google Scholar 

  11. K. Dackland and B. Kågström. Blocked Algorithms and Software for Reduction of a Regular Matrix Pair to Generalized Schur Form. ACM Trans. Math. Software, Vol. 25, No. 4, 425–454, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. A. Dubrulle. The Multishift QR Algorithm: Is It Worth the Trouble? Technical Report G320-3558+ (August), Palo Alto Scientific Center, IBM Corporation, 1991.

    Google Scholar 

  13. A. A. Dubrulle and G. H. Golub. A Multishift QR Algorithm without Computation of the Shifts. Numerical Algorithms 7, 1994, pp 173–181.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Elmroth, P. Johansson, B. Kågström, and D. Kreissner, A Web Computing Environment for the SLICOT Library, In P. Van Dooren and S. Van Huffel, The Third NICONET Workshop on Numerical Control Software, pp 53–61, 2001.

    Google Scholar 

  15. G. Henry and R. Van de Geijn. Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality. SIAM J. Sci. Comput. 17:870–883, 1997.

    Article  Google Scholar 

  16. G. Henry, D. Watkins, and J. Dongarra, J. A Parallel Implementation of the Nonsymmetric QR Algorithm for Distributed Memory Architectures. Technical Report CS-97-352 and Lapack Working Note 121, University of Tennessee, 1997.

    Google Scholar 

  17. I. Jonsson and B. Kågström. Recursive Blocked Algorithms for Solving Triangular Matrix Equations—Part I: One-Sided and Coupled Sylvester-Type Equations, SLICOT Working Note 2001-4. Submitted to ACM Trans. Math. Software.

    Google Scholar 

  18. I. Jonsson and B. Kågström. Recursive Blocked Algorithms for Solving Triangular Matrix Equations—Part II: Two-Sided and Generalized Sylvester and Lyapunov Equations, SLICOT Working Note 2001-5. Submitted to A CM Trans. Math. Software.

    Google Scholar 

  19. B. Kågström. A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in Linear Algebra for Large Scale and Real-Time Applications, M. Moonen, G. Golub, and B. D. Moor, eds., Kluwer Academic Publishers, Amsterdam, 1993, pp. 195–218.

    Google Scholar 

  20. B. Kågström. A perturbation analysis of the generalized Sylvester equation (AR-LB, DR-LE) = (C,F), SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1045–1060.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Kågström and P. Poromaa. Distributed and shared memory block algorithms for the triangular Sylvester equation with Sep−1 estimators, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 99–101.

    Article  Google Scholar 

  22. B. Kågström and P. Poromaa. Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Numerical Algorithms, 12 (1996), pp. 369–407.

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Kågström and P. Poromaa. LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, A CM Trans. Math. Software, 22 (1996), pp. 78–103.

    Article  MATH  Google Scholar 

  24. B. Lang, B. Using Level 3 BLAS in Rotation-Based Algorithms. SIAM J. Sci. Comput. 19:2 (1998), pp 626–634.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. B. Moler and G. W. Stewart. An Algorithm for Generalized Matrix Eigenvalue Problems. SIAM J. Num. Anal. 10, 241–256, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Poromaa. Parallel Algorithms for Triangular Sylvester Equations: Design, Scheduling and Scalability Issues. In Kågström et al. (eds), Applied Parallel Computing. Large Scale Scientific and Industrial Problems, Lecture Notes in Computer Science, Vol. 1541, pp 438–446, Springer-Verlag, 1998.

    Chapter  Google Scholar 

  27. SLICOT library in the Numerics in Control Network (NICONET) website: http://www.win.tue.nl/niconet/index.html

  28. G.W. Stewart and J-G. Sun. Matrix Perturbation Theory. Academic Press, 1990.

    Google Scholar 

  29. R. A. Van de Geijn. Deferred Shifting Schemes for the Parallel QR Methods. SIAM J. Sci. Comput. 14 (1993), pp 180–194.

    MATH  Google Scholar 

  30. D. S. Watkins. Shifting Strategies for the Parallel QR Algorithm. SIAM J. Sci. Comput. 15:4 (1994), pp 953–958.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. S. Watkins. Bulge Exchanges in Algorithms of QR Type. SIAM J. Matrix Anal. Appl. 18:4 (1998), pp 1074–1096.

    Article  MathSciNet  Google Scholar 

  32. D. S. Watkins and L. Elsner. Theory of Decomposition and Bulge-Chasing Algorithms for the Generalized Eigenvalue Problem. SIAM J. Matrix Anal. Appl. 15:3 (1994), pp 943–967.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adlerborn, B., Dackland, K., Kågström, B. (2002). Parallel and Blocked Algorithms for Reduction of a Regular Matrix Pair to Hessenberg-Triangular and Generalized Schur Forms. In: Fagerholm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V. (eds) Applied Parallel Computing. PARA 2002. Lecture Notes in Computer Science, vol 2367. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48051-X_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-48051-X_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43786-4

  • Online ISBN: 978-3-540-48051-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics