Skip to main content

Probabilistic Aggregates

Part of the Lecture Notes in Computer Science book series (LNAI,volume 2366)

Abstract

Though extensions of the relational model of data have been proposed to handle probabilistic information, there has been no work to date on handling aggregate operators in such databases. In this paper, we show how classical aggregation operators (like COUNT, SUM, etc.) as well as other statistical operators (like weighted average, variance, etc.) can be defined as well as implemented over probabilistic databases. We define these operations, develop a formal linear program model for computing answers to such queries, and then develop a generic algorithm to compute aggregates.

Keywords

  • Relational Algebra
  • Probability Interval
  • Aggregate Function
  • Deductive Database
  • Linear Programming Method

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Barbara, H. Garcia-Molina, and D. Porter. (1992) The Management of Probabilistic Data, IEEE Trans. on Knowledge and Data Engineering, Vol. 4, pps 487–502.

    CrossRef  Google Scholar 

  2. R. Cavallo and M. Pittarelli. (1987) The Theory of Probabilistic Databases, in Proc. VLDB’87.

    Google Scholar 

  3. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. (1992) Introduction to Algorithms, MIT Press, Cambridge.

    Google Scholar 

  4. A. Dekhtyar, R. Ross, and V.S. Subrahmanian, Probabilistic Temporal Databases, Part I: Algebra, ACM Transactions on Database Systems, Vol. 26, 1.

    Google Scholar 

  5. D. Dey and S. Sarkar. (1996) A Probabilistic Relational Model and Algebra, A CM Transactions on Database Systems, Vol. 21, 3, pps 339–369.

    CrossRef  Google Scholar 

  6. C. Dyreson and R. Snodgrass. (1998) Supporting Valid-Time Indeterminacy, ACM Transactions on Database Systems, Vol. 23, Nr. 1, pps 1–57.

    CrossRef  Google Scholar 

  7. T. Eiter, T. Lukasiewicz, and M. Walter. Extension of the relational algebra to probabilistic complex values. In Proceedings of the International Symposium on Foundations of Information and Knowledge Systems (Fo IKS 2000), Volume 1762 of LNCS (2000), pp. 94–115. Springer.

    CrossRef  Google Scholar 

  8. R. Fagin, J. Halpern, and N. Megiddo. (1990) A logic for reasoning about probabilities. Information and Computation 87, 78–128.

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. N. Fuhr and T. Rolleke. (1996) A probabilistic NF2 relational algebra for integrated information retrieval and database systems. ACM Transactions on Information Systems, 15, 1, 32–66.

    CrossRef  Google Scholar 

  10. G. Kamberova and R. Bajcsy. (1998) Stereo Depth Estimation: the Confidence Interval Approach, Proc. Intl. Conf. Computer Vision ICCV98, Bombay, India, Jan. 1998

    Google Scholar 

  11. W. Kiessling, H. Thone, and U. Guntzer. (1992) Database Support for Problematic Knowledge, in Proc. EDBT-92, pp. 421–436, Springer LNCS Vol. 580.

    Google Scholar 

  12. V.S. Lakshmanan, N. Leone, R. Ross, and V.S. Subrahmanian. (1996) Prob View: A Flexible Probabilistic Database System. ACM Transactions on Database Systems, Vol. 22, Nr. 3, pp. 419–469.

    CrossRef  Google Scholar 

  13. V.S. Lakshmanan and F. Sadri. (1994) Modeling Uncertainty in Deductive Databases, in Proc. Int. Conf. on Database Expert Systems and Applications, (DEXA’94), Lecture Notes in Computer Science, Vol. 856, Springer (1994), pp. 724–733.

    Google Scholar 

  14. V.S. Lakshmanan and F. Sadri. (1994) Probabilistic Deductive Databases, in Proc. Int. Logic Programming Symp., (ILPS’94), MIT Press.

    Google Scholar 

  15. W. N. Street, O. L. Mangasarian, and W.H. Wolberg. (1995) An inductive learning approach to prognostic prediction. Proceedings of the Twelfth International Conference on Machine Learning, A. Prieditis and S. Russell, eds., pages 522–530, Morgan Kaufmann, 1995.

    Google Scholar 

  16. J.D. Ullman. (1989) Principles of Database and Knowledge Base Systems, Computer Science Press, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ross, R., Subrahmanian, V.S., Grant, J. (2002). Probabilistic Aggregates. In: Hacid, MS., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds) Foundations of Intelligent Systems. ISMIS 2002. Lecture Notes in Computer Science(), vol 2366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48050-1_59

Download citation

  • DOI: https://doi.org/10.1007/3-540-48050-1_59

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43785-7

  • Online ISBN: 978-3-540-48050-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics