Skip to main content

Minimal Generalizations under OI-Implication

  • 651 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 2366)

Abstract

The adoption of the object identity bias for weakening implication has lead to the definition of OI-implication, a generalization model for clausal spaces. In this paper, we investigate on the generalization hierarchy in the space ordered by OI-implication. The decidability of this relationship and the existence of minimal generalizations in the related search space is demonstrated. These results can be exploited for constructing refinement operators for incremental relational learning.

Keywords

  • Search Space
  • Object Identity
  • Logical Implication
  • Generalization Model
  • Relational Learning

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L Badea and M. Stanciu. Refinement operators can be (weakly) perfect. In S. Džeroski and P. Flach, editors, Proceedings of the 9th International Workshop on Inductive Logic Programming, volume 1634 of LNAI, pages 21–32. Springer, 1999.

    Google Scholar 

  2. F. Esposito, N. Fanizzi, S. Ferilli, and G. Semeraro. A generalization model based on OI-implication for ideal theory refinement. Fundamenta Informaticae, 47:15–33, 2001.

    MATH  MathSciNet  Google Scholar 

  3. F. Esposito, N. Fanizzi, S. Ferilli, and G. Semeraro. OI-implication: Soundness and refutation completeness. In B. Nebel, editor, Proceedings of the 17th International Joint Conference on Artificial Intelligence, pages 847–852, Seattle, WA, 2001.

    Google Scholar 

  4. G. Gottlob. Subsumption and implication. Information Processing Letters, 24(2):109–111, 1987.

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. G. Gottlob and C.G. Fermüller. Removing redundancy from a clause. Artificial Intelligence, 61:263–289, 1993.

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. P. Idestam-Almquist. Generalization of clauses under implication. Journal of Artificial Intelligence Research, 3:467–489, 1995.

    MATH  Google Scholar 

  7. R. Khardon. Learning function-free Horn expressions. Machine Learning, 37(3):241–275, December 1999.

    Google Scholar 

  8. Jörg-Uwe Kietz. A comparative study of structural most specific generalisations used in machine learning. In Proceedings of the Third International Workshop on Inductive Logic Programming, pages 149–164, Ljubljana, Slovenia, 1993. J. Stefan Institute Technical Report IJS-DP-6707.

    Google Scholar 

  9. S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming, volume 1228 of LNAI. Springer, 1997.

    Google Scholar 

  10. M. Schmidt-Schauss. Implication of clauses is undecidable. Theoretical Computer Science, 59:287–296, 1988.

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fanizzi, N., Ferilli, S. (2002). Minimal Generalizations under OI-Implication. In: Hacid, MS., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds) Foundations of Intelligent Systems. ISMIS 2002. Lecture Notes in Computer Science(), vol 2366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48050-1_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-48050-1_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43785-7

  • Online ISBN: 978-3-540-48050-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics