Advertisement

Yet Another Survey on Image Segmentation: Region and Boundary Information Integration

  • J. Freixenet
  • X. Muñoz
  • D. Raba
  • J. Martí
  • X. Cufí
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2352)

Abstract

Image segmentation has been, and still is, a relevant research area in Computer Vision, and hundreds of segmentation algorithms have been proposed in the last 30 years. However, it is well known that elemental segmentation techniques based on boundary or region information often fail to produce accurate segmentation results. Hence, in the last few years, there has been a tendency towards algorithms which take advantage of the complementary nature of such information. This paper reviews different segmentation proposals which integrate edge and region information and highlights 7 different strategies and methods to fuse such information. In contrast with other surveys which only describe and compare qualitatively different approaches, this survey deals with a real quantitative comparison. In this sense, key methods have been programmed and their accuracy analyzed and compared using synthetic and real images. A discussion justified with experimental results is given and the code is available on Internet.

Keywords

grouping and segmentation region based segmentation boundary based segmentation cooperative segmentation methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haralick, R., Shapiro, L.: Computer and Robot Vision. Volume 1 & 2. Addison-Wesley Inc, Reading, Massachussets (1992 & 1993)Google Scholar
  2. 2.
    Fu, K., Mui, J.: A survey on image segmentation. Pattern Recognition 13 (1981) 3–16CrossRefMathSciNetGoogle Scholar
  3. 3.
    Haralick, R., Shapiro, L.: Image segmentation techniques. Computer Vision, Graphics and Image Processing 29 (1985) 100–132CrossRefGoogle Scholar
  4. 4.
    Pal, N., Pal, S.: A review on image segmentation techniques. Pattern Recognition 26 (1993) 1277–1294CrossRefGoogle Scholar
  5. 5.
    Pavlidis, T., Liow, Y.: Integrating region growing and edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990) 225–233CrossRefGoogle Scholar
  6. 6.
    Falah, R., Bolon, P., Cocquerez, J.: A region-region and region-edge cooperative approach of image segmentation. In: International Conference on Image Processing. Volume 3., Austin, Texas (1994) 470–474Google Scholar
  7. 7.
    Kohler, R.: A segmentation system based on thresholding. Computer Vision, Graphics and Image Processing 15 (1981) 319–338CrossRefGoogle Scholar
  8. 8.
    Kittler, J., Illingworth, J.: On threshold selection using clustering criterion. IEEE Transactions on Systems, Man, and Cybernetics 15 (1985) 652–655Google Scholar
  9. 9.
    Chen, P., Pavlidis, T.: Image segmentation as an estimation problem. Computer Graphics and Image Processing 12 (1980) 153–172CrossRefGoogle Scholar
  10. 10.
    Bonnin, P., Blanc Talon, J., Hayot, J., Zavidovique, B.: A new edge point/region cooperative segmentation deduced from a 3d scene reconstruction application. In: SPIE Applications of Digital Image Processing XII. Volume 1153. (1989) 579–591Google Scholar
  11. 11.
    Zucker, S.: Region growing: Childhood and adolescence. Computer Graphics and Image Processing 5 (1976) 382–399CrossRefGoogle Scholar
  12. 12.
    Xiaohan, Y., Yla-Jaaski, J., Huttunen, O., Vehkomaki, T., Sipild, O., Katila, T.: Image segmentation combining region growing and edge detection. In: International Conference on Pattern Recognition. Volume C., The Hague, Netherlands (1992) 481–484Google Scholar
  13. 13.
    Gambotto, J.: A new approach to combining region growing and edge detection. Pattern Recognition Letters 14 (1993) 869–875zbMATHCrossRefGoogle Scholar
  14. 14.
    Benois, J., Barba, D.: Image segmentation by region-contour cooperation for image coding. In: International Conference on Pattern Recognition. Volume C., The Hague, Netherlands (1992) 331–334Google Scholar
  15. 15.
    Sinclair, D.: Voronoi seeded colour image segmentation. Technical Report 3, AT&T Laboratories Cambridge (1999)Google Scholar
  16. 16.
    Moghaddamzadeh, A., Bourbakis, N.: A fuzzy region growing approach for segmentation of color images. Pattern Recognition 30 (1997) 867–881CrossRefGoogle Scholar
  17. 17.
    Cufí, X., Muñoz, X., Freixenet, J., Martí, J.: A concurrent region growing algorithm guided by circumscribed contours. In: International Conference on Pattern Recognition. Volume I., Barcelona, Spain (2000) 432–435Google Scholar
  18. 18.
    Gagalowicz, A., Monga, O.: A new approach for image segmentation. In: International Conference on Pattern Recognition, Paris, France (1986) 265–267Google Scholar
  19. 19.
    Philipp, S., Zamperoni, P.: Segmentation and contour closing of textured and non-textured images using distances between textures. In: International Conference on Image Processing. Volume C., Lausanne, Switzerland (1996) 125–128Google Scholar
  20. 20.
    Fjørtoft, R., Cabada, J., Lopès, A., Marthon, P., Cubero-Castan, E.: Complementary edge detection and region growing for sar image segmentation. In: Conference of the Norwegian Society for Image Processing and Pattern Recognition. Volume 1., Tromsø, Norway (1997) 70–72Google Scholar
  21. 21.
    Haddon, J., Boyce, J.: Image segmentation by unifying region and boundary information. IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990) 929–948CrossRefGoogle Scholar
  22. 22.
    Chu, C., Aggarwal, J.: The integration of image segmentation maps using region and edge information. IEEE Transactions on Pattern Analysis and Machine Intelligence 15 (1993) 1241–1252CrossRefGoogle Scholar
  23. 23.
    Sato, M., Lakare, S., Wan, M., Kaufman, A., Nakajima, M.: A gradient magnitude based region growing algorithm for accurate segmentation. In: International Conference on Image Processing. Volume III., Vancouver, Canada (2000) 448–451Google Scholar
  24. 24.
    Wilson, R., Spann, M.: Finite prolate spheroidial sequences and their applications ii: Image feature description and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 10 (1988) 193–203CrossRefGoogle Scholar
  25. 25.
    Hsu, T., Kuo, J., Wilson, R.: A multiresolution texture gradient method for un-supervised segmentation. Pattern Recognition 32 (2000) 1819–1833CrossRefGoogle Scholar
  26. 26.
    Chan, F., Lam, F., Poon, P., Zhu, H., Chan, K.: Object boundary location by region and contour deformation. IEE Proceedings-Vision Image and Signal Processing 143 (1996) 353–360CrossRefGoogle Scholar
  27. 27.
    Vérard, L., Fadili, J., Ruan, S., Bloyet, D.: 3d mri segmentation of brain structures. In: International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, Netherlands (1996) 1081–1082Google Scholar
  28. 28.
    Jang, D., Lee, D., Kim, S.: Contour detection of hippocampus using dynamic contour model and region growing. In: International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, Ilinois (1997) 763–766Google Scholar
  29. 29.
    Siebert, A.: Dynamic region growing. In: Vision Interface, Kelowna, Canada (1997)Google Scholar
  30. 30.
    Fua, P., Hanson, A.: Using generic geometric models for intelligent shape extraction. In: National Conference on Artificial Intelligence, Seattle, Washington (1987) 706–711Google Scholar
  31. 31.
    Lemoigne, J., Tilton, J.: Refining image segmentation by integration of edge and region data. IEEE Transactions on Geoscience and Remote Sensing 33 (1995) 605–615CrossRefGoogle Scholar
  32. 32.
    Hojjatoleslami, S., Kittler, J.: Region growing: A new approach. IEEE Transactions on Image Processing 7 (1998) 1079–1084CrossRefGoogle Scholar
  33. 33.
    Vincken, K., Koster, A., Viergever, M.: Probabilistic multiscale image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997) 109–120CrossRefGoogle Scholar
  34. 34.
    Sahoo, P., Soltani, S., Wong, A., Chen, Y.: A survey of thresholding techniques. Computer Vision, Graphics and Image Processing 41 (1988) 233–260CrossRefGoogle Scholar
  35. 35.
    Zhang, Y.: Evaluation and comparison of different segmentation algorithms. Pattern Recognition Letters 18 (1997) 963–974CrossRefGoogle Scholar
  36. 36.
    Huang, Q., Dom, B.: Quantitative methods of evaluating image segmentation. In: International Conference on Image Processing. Volume III., Washington DC (1995) 53–56Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • J. Freixenet
    • 1
  • X. Muñoz
    • 1
  • D. Raba
    • 1
  • J. Martí
    • 1
  • X. Cufí
    • 1
  1. 1.Institute of Informatics and ApplicationsUniversity of GironaGironaSpain

Personalised recommendations