Advertisement

Time Reversal Invariance in Nuclear Physics: From Neutrons to Stochastic Systems

  • Christopher R. Gould
  • Edward David Davis
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 591)

Abstract

To test models of CP violation it is important to look for T-violating effects in as many different systems as possible. In this experimental search, nuclear tests with neutrons have played an important role. We review the basic issues underlying measurements of the neutron’s T-odd electric dipole moment, and discuss a promising new line of investigation involving transmission of polarized neutrons through spin polarized and aligned nuclear targets, particularly at epithermal neutron energies. We give a self-contained derivation of the generalization of the optical theorem to include polarization degrees of freedom, and derive the expressions required to analyze polarized neutron transmission in targets of arbitrary polarization state.

Keywords

Parity Violation Spin Space Time Reversal Invariance Partial Wave Expansion Triple Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Golub, D.J. Richardson, S.K. Lamoreaux: Ultracold Neutrons (Adam-Hilger, Bristol 1991)Google Scholar
  2. 2.
    S. Lamoreaux, I. Khriplovich: CP Violation Without Strangeness — Electric Dipole Moments of Particles, Atoms and Molecules (Springer, New York 1997)Google Scholar
  3. 3.
    N.R. Roberson, C.R. Gould, J.D. Bowman: Tests of Time Reversal Invariance in Neutron Physics (World Scientific, Singapore 1987)Google Scholar
  4. 4.
    C.R. Gould, J.D. Bowman, Yu.P. Popov: Time Reversal Invariance and Parity violation in Neutron Reactions (World Scientific, Singapore 1994)Google Scholar
  5. 5.
    see E. Henley (this book) for a detailed discussion of the time reversal and parity operatorsGoogle Scholar
  6. 6.
    R. Golub, S.K. Lamoreaux: Phys. Reports 237, 1 (1994)CrossRefADSGoogle Scholar
  7. 7.
    For a pedagogical discussion of weak neutron optics, see C.R. Gould: Am. J. Physics 65, 1213 (1997)CrossRefADSGoogle Scholar
  8. 8.
    P. Huffman et al.: Phys. Rev. C 55, 2684 (1997)CrossRefADSGoogle Scholar
  9. 9.
    S.K. Lamoreaux, R. Golub: Phys. Rev. D 50, 5632 (1994)CrossRefADSGoogle Scholar
  10. 10.
    G.E. Mitchell, J.D. Bowman, H.A. Weidenmuller: Rev. Mod. Phys. 71, 445 (1999)CrossRefADSGoogle Scholar
  11. 11.
    E.D. Davis, C.R. Gould: Phys. Lett. B 447, 209 (1999)CrossRefADSGoogle Scholar
  12. 12.
    V. Hnizdo: Phys. Rev. 50, 2639 (1994).CrossRefADSGoogle Scholar
  13. 13.
    R.J.N. Phillips: Nucl. Phys. 43, 413 (1963)CrossRefGoogle Scholar
  14. 14.
    C.J. Joachain: Quantum Collision Theory, 3rd Ed. (North-Holland, Amsterdam 1983)Google Scholar
  15. 15.
    D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii: Quantum Theory of Angular Momentum (World Scientific, Singapore 1988)Google Scholar
  16. 16.
    C.R. Gould, D.G. Haase, N.R. Roberson, H. Postma, J.D. Bowman: Int. J. Mod. Phys. A5, 2181 (1990)ADSGoogle Scholar
  17. 17.
    M. Simonius: ‘Polarization Nuclear Physics’. In: Lecture Notes in Physics, vol. 30 ed. by D. Fick (Springer-Verlag, Berlin 1974) p. 38Google Scholar
  18. 18.
    A. R. Edmonds: Angular Momentum in Quantum Mechanics (Princeton University Press, New York 1957)zbMATHGoogle Scholar

Copyright information

© Springer-VerlagBerlin Heidelberg 2002

Authors and Affiliations

  • Christopher R. Gould
    • 1
    • 3
  • Edward David Davis
    • 1
    • 2
    • 3
  1. 1.North Carolina State UniversityRaleighUSA
  2. 2.Physics DepartmentKuwait UniversitySafatKuwait
  3. 3.Triangle Universities Nuclear LaboratoryDurhamUSA

Personalised recommendations