Advertisement

CP, T, and CPT Symmetries

  • Ernest M. Henley
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 591)

Abstract

The parity (P), charge conjugation (C) symmetries are briefly reviewed. CP and time reversal (T) transformations and conservation laws are studied; the strong CP problem is discussed. Experimental measurements of the violation of these symmetries are presented. Finally, the CPT theorem and its consequences are discussed.

Keywords

Time Reversal Electric Dipole Moment Parity Transformation Magnetic Dipole Moment Time Reversal Invariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Frauenfelder and E.M. Henley, Subatomic Physics, 2nd edn. (Prentice Hall, Englewood Cliffs, NJ, 1991)Google Scholar
  2. 2.
    H. Frauenfelder and E.M. Henley, Nuclear and Particle Physics(W.A. Benjamin, Reading, MA, 1975)Google Scholar
  3. 3.
    T.D. Lee and C.N. Yang, Phys. Rev. 104, 254 (1956)CrossRefADSGoogle Scholar
  4. 4.
    C.S. Wu et al., Phys. Rev. 105, 1413 (1957)CrossRefADSGoogle Scholar
  5. 5.
    See e.g., E. D. Commins and P.M. Bucksbaum Weak Interactions of Leptons and Quarks (Cambridge Univ. Press, London, 1983)Google Scholar
  6. 6.
    E. G. Adelberger and W.C. Haxton, Ann. Rev. Nucl. Part. Sci. 35, 501 (1985)CrossRefADSGoogle Scholar
  7. 7.
    C.S. Wood et al., Science 275, 1759 (1997)CrossRefGoogle Scholar
  8. 8.
    W. Haeberli and B.R. Holstein in Symmetries and Fundamental Interactions in Nuclei ed. by W.C. Haxton and E. M. Henley (World Sci., Singapore, 1995) p. 17Google Scholar
  9. 9.
    C.R. Gould et al., Int. J. Mod. Phys. A5, 2181 (1990)ADSGoogle Scholar
  10. 10.
    D.T. Spayde et al., Phys. Rev. Lett. 84, 1106 (2000)CrossRefADSGoogle Scholar
  11. 11.
    C.J. Horowitz et al., LANL Archiv. nucl-th 9912038 (1999); S. J. Pollock and M. Welliver (private communication)Google Scholar
  12. 12.
    Review of Particle Physics, Particle Data Group, Europ. Phys. J. C15, 1 (2000)Google Scholar
  13. 13.
    J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, NY, 1964)Google Scholar
  14. 14.
    H. Frauenfelder and A. Rossi in Methods in Experimental Physics, ed. by L.C. Yuan and C.S. Wu (Academic Press, NY, 1963)Google Scholar
  15. 15.
    H.G. Behrend, Cello Collabor. Phys. Lett. 191B, 209 (1987)ADSGoogle Scholar
  16. 16.
    J.H. Christenson, J.W. Cronin, W.L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138 (1964)CrossRefADSGoogle Scholar
  17. 17.
    G.D. Barr et al., Phys. Lett. B317, 233 (1993); A. Alavi-Harati, KTeV Collabor., Phys. Rev. Lett. 83, 22 (1999)ADSGoogle Scholar
  18. 18.
    Lincoln Wolfenstein, Phys. Rev. Lett 13, 562 (1964) and Comm. Nucl. Part. Phys. 21, 275 (1994)CrossRefADSGoogle Scholar
  19. 19.
    M. Kobayashi and T. Maskawa, Progr. Theor. Phys. 49, 652 (1973); N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)CrossRefADSGoogle Scholar
  20. 20.
    I.S. Towner and J.C. Hardy in Symmetries and Fundamental Interactions in Nuclei, loc.cit, p.183Google Scholar
  21. 21.
    F. Boehm in Symmetriesand Fundamental Interactions in Nuclei, loc.cit. p.67Google Scholar
  22. 22.
    E. Blanke et al., Phys. Rev. Lett. 51, 355 (1983)CrossRefADSGoogle Scholar
  23. 23.
    L. Stodolski in Tests of Time Reversal Invariance in Neutron Physics, ed. by N. Roberson, C.R. Gould, and J.D. Bowman (World Sci., Singapore, 1987), p. 12Google Scholar
  24. 24.
    P.G. Harris et al., Phys. Rev. Lett. 82, 904 (1999); J.P. Jacobs et al., Phys. Rev. A52, 3521 (1995)CrossRefADSGoogle Scholar
  25. 25.
    L. Wolfenstein, Ann. Rev. Nucl. Part. Sci. 36, 137 (1986); X.G. He, B.H.J. McKellar, and S, Pakvasa, Int. J. Mod. Phys. A4 5 (1986), N.F. Ramsay, Ann. Rev. Nucl. Part. Sci., 40, 1 (1990)CrossRefADSGoogle Scholar
  26. 26.
    A. Angelopoulos et al., CPLEAR Collabor. Phys. Lett. B444, 43 (1998)ADSGoogle Scholar
  27. 27.
    J. Ellis and N.E. Navromatos, Phys. Rep. 320, 341 (1999)CrossRefADSGoogle Scholar
  28. 28.
    H-Y Cheng, Phys. Rep. 158, 1 (1988)CrossRefADSGoogle Scholar
  29. 29.
    C-T Chan, Ph.D. thesis, Univ. of Washington, 1996 and C-T Chan, E.M. Henley, and T. Meissner, LANL. arch. hep-ph/9905317 (1999)Google Scholar
  30. 30.
    V. Baluni, Phys. Rev. D19, 2227 (1979); R. J Crewther et al., Phys. Lett. B88, 123 (1979), erratum ibid B91, 487 (1980)ADSGoogle Scholar
  31. 31.
    M. Pospelov and A. Ritz,, Phys. Rev. Lett. 83, 2526 (1999) and Nucl. Phys. B573, 177 (2000)CrossRefADSGoogle Scholar
  32. 32.
    R.D. Peccei and H.R. Quinn, Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev D16, 179 (1977)CrossRefADSGoogle Scholar
  33. 33.
    L.J. Rosenberg, and K.A. van Bibber, Phys. Rep. 325, 1 (2000)CrossRefADSGoogle Scholar
  34. 34.
    J.E. Kim, Phys. Rep. 150, 1 (1987)CrossRefADSGoogle Scholar
  35. 35.
    S. Weinberg, Phys. Rev. Lett. 40, 223 (1978); F. Wilczek, Phys. Rev. Lett. 40, 279 (1978)CrossRefADSGoogle Scholar
  36. 36.
    J. Schwinger, Phys. Rev. 82, 914 (1951) and 91, 713 (1951); G. Lueders, Z. Phys. 133, 325 (1952)zbMATHCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    W. Pauli in Niels Bohr and the Development of Physics (Pergamon, London, 1955); J.S. Bell, Proc. Roy. Soc., London,A231, 479 (1955)zbMATHGoogle Scholar
  38. 38.
    J.J. Sakurai, Invariance Principles and Elementary Particles, (Princeton Univ. Press, Princeton, NJ, (1964)Google Scholar
  39. 39.
    A.I. Sanda, LANL Archiv. hep-ph 9902353 (1999)Google Scholar
  40. 40.
    R. Bluhm, V.A. Kostalecky, and C.D. Lane, Phys. Rev. Lett. 84, 1098 (2000)CrossRefADSGoogle Scholar
  41. 41.
    D. Bear et al., LANL Archiv. phys-0007049 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Ernest M. Henley
    • 1
  1. 1.Department of Physics, and Institute for Nuclear TheoryUniversity of WashingtonSeattleUSA

Personalised recommendations