Skip to main content

Folding and Unfolding Linkages, Paper, and Polyhedra

  • Conference paper
  • First Online:
Discrete and Computational Geometry (JCDCG 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2098))

Included in the following conference series:

Abstract

Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500’s [Dür77], but have not been studied extensively until recently. Over the past few years, there has been a surge of interest in these problems in discrete and computationsl geometry. This paper gives a brief survey of some of the recent work in this area, subdivided into three sections based on the type of object being folded: linkages, paper, or polyhedra. See also [O’R98] for a related survey from this conference two years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-K. Ahn, P. Bose, J. Czyzowicz, N. Hanusse, E. Kranakis, and P. Morin. Flipping your lid. Geombinatorics, 10(2):57–63, 2000.

    MATH  MathSciNet  Google Scholar 

  2. E. M. Arkin, M. A. Bender, E. D. Demaine, M. L. Demaine, J. S. B. Mitchell, S. Sethia. and S.S. Skiena. When can you fold a map? Computing Research Repository cs.CG/0011026, Nov, 2000. http://www/aeXiv.org/abs/cs.CG/0011026.

  3. O. Aichholzer, C. Cortés, E. D. Demaine, V. Sujmović, J. Erickson, H. Meijer, M. Overmars, B. Palop, S. Ramaswami, and G. T. Toussaint. Flipturning polygons. In Proc. Japan Conf. Discrete Comput. Geom., Lecture Notes in Comput. Sci., Tokyo, Japan, Nov. 2000. To appear in Descrete and Computational Geometry.

    Google Scholar 

  4. O. Aichholzer, E. D. Demaina, J. Erickson, F. Hurtado, M. Overmars, M. A. Soss, and G. T. Toussaint. Reconfiguring convex polygons. Comput. Geom. Theory Appl., 2001. To appear.

    Google Scholar 

  5. B. Aronov, J. E. Goodman, and R. Pollack. Convexification of planar polygons in R3. Manuscript, Oct. 1999. http://www.math.nyu.edu/faculty/pollack/convexifyingapolygon10-27-99.ps.

  6. B. Aronov and J. O’Rourke. Nonoverlap of the star unfolding. Discrete Comput. Geom., 8(3):219–250, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Beidl, E. Demaine, M. Demaine, A. Lubiw, M. Overmars, J. O.’Rourke, S. Robbins, and S. Whitesides. Unfolding some classes of orthogonal polyhedra. In Proc. 10th Canadian Conf. Comput. Geom., Montréal, Canada, Aug. 1998. http://cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-biedl-unfolding.ps.gz.

  8. T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, M. Overmars, S. Robbins, I. Streinu, G. Toussaint, and S. Whitesides. Locked and unlocked polygonal chains in 3D. Technical Report 060, Smith College, 1999. A preliminary version appeared in the Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, Baltimore, Maryland, Jan. 1999, pages 866–867.

    Google Scholar 

  9. T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’Rourke, S. Robbins, I. Streinu, G. Toussaint, and S. Whitesides. A note on reconfiguring tree linkages: Trees can lock. Discrete Appl. Math., 2001. To appear.

    Google Scholar 

  10. M. Bern, E. D. Demaine, D. Eppstein, E. Kuo, A. Mantler, and J. Snoeyink. Ununfoldable polyhedra with convex faces. Comput. Geom. Theory Appl. 2001. To appear.

    Google Scholar 

  11. M. Bern, E. Demaine, D. Eppstein, and B. Hayes, A disk-packing algorithm for an origami magic trick. In Proc. Internat. Conf. Fun with Algorithms, Isola d’Elba, Italy, June 1998.

    Google Scholar 

  12. T. C. Biedl, E. D. Demaine, S. Lazard, S. M. Robbins, and M. A. Soss. Convexifying monotone polygons. In Proc. Internat. Symp. Algorithms and Computation, volume 1741 of Lecture Notes in Comput. Sci., pages 415–424, Chennai, India, Dec. 1999.

    Chapter  Google Scholar 

  13. M. Bern and B. Hayes. The complexity of flat origami. In Proc. 7th ACMSIAM Sympos. Discrete Algorithms, pages 175–183, Atlanta, Jan. 1996.

    Google Scholar 

  14. R. Connelly, E. D. Demaine, and G. Rote. Straightening polygonal arcs and convexifying polygonal cycles. In Proc. 41st IEEE Sympos. Found. Comp. Sci., pages 432–442, Redondo Beach, California, Nov. 2000.

    Google Scholar 

  15. J. Cantarella and H. Johnston. Nontrivial embeddings of polygonal intervals and unknots in 3-space. J. Knot Theory Ramifications, 7(8):1027–1039, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.A. Calvo, D. Krizanc, P. Morin, M. Soss, and G. Toussaint. Convexifying polygons with simple projections. Infor. Process. Lett., 2001. To appear.

    Google Scholar 

  17. R. Cocan and J. O’Rourke. Polygonal chains cannot lock in 4D. In Proc. 11th Canadian Conf. Comput. Geom., Vancouver, Canada. Aug. 1999. http://www.cs.ubc.ca/conferences/CCCG/elec_proc/c17.ps.gz.

  18. E. D. Demaine and M. L. Demaine. Recent results in computational origami. In Proc. 3rd Internat. Meeting of Origami Science, Math, and Education, Monterey, California, March 2001. To appear.

    Google Scholar 

  19. E. D. Demaine, M. L. Demaine, and A. Lubiw. Folding and cutting paper. In J. Akiyama, M. Kano, and M. Urabe, editors, Revised Papers from the Japan Conf. Discrete Comput. Geom., volume 1763 of Lecture Notes in Comput. Sci., pages 104–117, Tokyo, Japan, Dec. 1998.

    Google Scholar 

  20. E. D. Demaine, M. L. Demaine, and A. Lubiw. Flattening polyhedra. Manuscript, 2000.

    Google Scholar 

  21. E. Demaine, M. Demaine, A. Lubiw, and J. O’Rourke. Examples, counterexamples, and enumeration results for foldings and unfoldings between polygons and polytopes. Technical Report 069, Smith College, Northampton, MA, July 2000.

    Google Scholar 

  22. E. D. Demaine, M. L. Demaine, A. Lubiw, and J. O’Rourke. Enumerating foldings and unfoldings between polygons and polytopes. In Proc. Japan Conf. Discrete Comput. Geom., Lecture Notes in Comput. Sci., Tokyo, Japan, Nov. 2000.

    Google Scholar 

  23. E. D. Demaine, M. L. Demaine, and J. S. B. Mitchell. Folding flat silhouttes and wrapping polyhedral packages: New results in computational origami. Comput. Geom. Theory Appl., 16(1):3–21, 2000.

    MATH  MathSciNet  Google Scholar 

  24. A. Dürer. The Painter’s Manual: A Manual of Measurement of Lines, Areas, and Solids by Means of Compass and Ruler Assembled by Albrecht Dürer for the Use of All Lovers of Art with Appropriate Illustrations Arranged to be Printed in the Year MDXXV. Abaris Books, Inc., New York, 1977. English translation of Unterweysung der Messung mit dem Zirkel un Richtscheyt in Linien Ebnen uhnd Gantzen Corporen, 1525.

    Google Scholar 

  25. H. Everett, S. Lazard, S. Robbins, H. Schröder, and S. Whitesides. Convexifying star-shaped polygons. In Proc. 10th Canadian Conf. Comput. Geom., Montréal, Canada, Aug. 1998. http://cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-everett-convexifying.ps.gz.

  26. P. Erdös. Problem 3763. Amer. Math. Monthly, 42:627, 1935.

    Article  MathSciNet  Google Scholar 

  27. T. Fevens, A. Hernandez, A. Mesa, M. Soss, and G. Toussaint. Simple polygons that cannot be deflated. Beiträge Algebra Geom., 2001. To appear.

    Google Scholar 

  28. M. Gardner. The combinatorics of paper folding. In Wheels, Life and Other Mathematical Amusements, chapter 7, pages 60–73. W. H. Freeman and Company, 1983.

    Google Scholar 

  29. B. Günbaum. How to convexify a polygon. Geombinatorics, 5:24–30, July 1995.

    MathSciNet  Google Scholar 

  30. T. Hull. On the mathematics of flat origamis. Congr. Numer., 100:215–224, 1994.

    MATH  MathSciNet  Google Scholar 

  31. J. Justin. Towards a mathematical theory of origami. In K. Miura, editor, Proc. 2nd Internat. Meeting of Origami Science and Scientific Origami, pages 15–29, Otsu, Japan, November—December, 1994.

    Google Scholar 

  32. T. Kawasaki. On the relation betwen mountain-creases and valley-creases of a flat origami. In H. Huzita, editor, Proc. 1st Internat. Meeting of Origami Science and Technology, pages 229–237, Ferrara, Italy, Dec. 1989. An unabridged Japanese version appeared in Sasebo College of Technology Report, 27:153—157, 1990.

    Google Scholar 

  33. M. Kapovich and J. Millson. On the moduli space of polygons in the Euclidean plane. J. Differential Geom., 42(1):133–164, 1995.

    MATH  MathSciNet  Google Scholar 

  34. R. J. Lang. A computational algorithm for origami design. In Proc. 12th Sympos. Comput. Geom., pages 98–105, Philadelphia, PA, May 1996.

    Google Scholar 

  35. A. Lubiw and J. O’Rourke. When can a polygon fold to a polytope? Technical Report 048, Smith College, June 1996.

    Google Scholar 

  36. W. F. Lunnon. Multi-dimensional map-folding. The Computer Journal, 14(1):75–80, Feb. 1971.

    Article  MATH  MathSciNet  Google Scholar 

  37. W. J. Lenhart and S. H. Whitesides. Reconfiguring closed polygonal chaines in Euclidean d-space. Discrete Comput. Geom., 13:123–140, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  38. J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem. SIAM J. Comput., 16(4):644–668, Aug. 1987.

    Article  MathSciNet  Google Scholar 

  39. J. Montroll. African Animals in Origami. Dover Publications, 1991.

    Google Scholar 

  40. B. Nagy. Solution to problem 3763. Amer. Math. Monthly, 46:176–177, Mar. 1939.

    Article  MathSciNet  Google Scholar 

  41. J. O’Rourke. Folding and unfolding in computational geometry. In Revised Papers from the Japan Conf. Discrete Comput. Geom., volume 1763 of Lecture Notes in Comput. Sci., pages 258–266, Tokyo, Japan, Dec. 1998.

    Google Scholar 

  42. G. T. Sallee. Stretching chords of space curves. Geom. Dedicata, 2:311–315, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  43. C. Schevon. Algorithms for Geodesics on Polytopes. PhD thesis, Johns Hopkins University, 1989.

    Google Scholar 

  44. G. C. Shephard. Convex polytopes with convex nets. Math. Proc. Cambridge Philos. Soc., 78:389–403, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  45. I. Streinu. A combinatorial approach to planar non-colliding robot arm motion planning. In Proc. 41st IEEE Sympos. Found. Comp. Sci., pages 443–453, Redondo Beach, California, Nov. 2000.

    Google Scholar 

  46. G. Toussaint. Computational polygonal entanglement theory. In Proceedings of the VIII Encuentros de Geometria Computational. Castellon, Spain, July 1999.

    Google Scholar 

  47. G. Toussaint. The Erdös-Nagy theorem and its ramifications. In Proc. 11th Canadian Conf. Comput. Geom., Vancouver, Canada, Aug. 1999. http://www.cs.ubc.ca/conferences/CCCG/elec_proc/fp19.ps.gz.

  48. G. Toussaint. A New class of stuck unknots in pol 6. Beiträge Algebra Geom., 2001. To appear.

    Google Scholar 

  49. S. Whitesides. Algorithmic issues in the geometry of planar linkage movement. Australian Computer Journal, 24(2):42–50, May 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demaine, E.D. (2001). Folding and Unfolding Linkages, Paper, and Polyhedra. In: Akiyama, J., Kano, M., Urabe, M. (eds) Discrete and Computational Geometry. JCDCG 2000. Lecture Notes in Computer Science, vol 2098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47738-1_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-47738-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42306-5

  • Online ISBN: 978-3-540-47738-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics