A Multiphase Model Describing Polymer Crystallization and Melting

  • Gert Strobl
Part of the Lecture Notes in Physics book series (LNP, volume 714)


The results of temperature dependent small angle X-ray scattering experiments on a variety of crystallizing polymers contradict conventional wisdom and suggest that polymer crystallization generally uses a route which includes a passage via a mesomorphic phase. We construct a thermodynamic scheme dealing with the transitions between melt, mesomorphic layers and lamellar crystallites, assuming for the latter ones that they exist both in an initial ‘native’ and a final ‘stabilized’ form. Application of the scheme in a quantitative evaluation of small angle X-ray scattering and calorimetric results yields the equilibrium transition temperatures between the various phases, latent heats of transition and surface free energies. As an example, the data obtained for s-polypropylene are given. Here, the mesomorphic phase has thermodynamic properties which place this state intermediate between melt and crystals.


Surface Free Energy Isothermal Crystallization Crystal Thickness Polymer Crystallization Melting Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Faraday Discussion. Faraday Disc. Chem. Soc., 68, 1979.Google Scholar
  2. [2]
    J.D. Hoffman, G.T. Davis, and J.I. Lauritzen. In Treatise on Solid State Chemistry Vol. 3, N.B. Hannay Ed., p. 497. Plenum, 1976.Google Scholar
  3. [3]
    S. Rastogi, M. Hikosaka, H. Kawabata, and A. Keller. Macromolecules, 24:6384, 1991.CrossRefGoogle Scholar
  4. [4]
    A. Keller, M. Hikosaka, S. Rastogi, A. Toda, P.J. Barham, and G. Goldbeck-Wood. J. Mater. Sci., 29:2579, 1994.CrossRefGoogle Scholar
  5. [5]
    M. Imai, K. Kaji, T. Kanaya, and Y. Sakai. Phys. Rev. B, 52:12696, 1995.CrossRefGoogle Scholar
  6. [6]
    P.D. Olmsted, W.C.K. Poon, T.C.B. McLeish, T.C.B. Terrill, and A.J. Ryan. Phys. Rev. Lett., 81:373–376, 1998.CrossRefGoogle Scholar
  7. [7]
    G. Hauser, J. Schmidtke, and G. Strobl. Macromolecules, 31:6250, 1998.CrossRefGoogle Scholar
  8. [8]
    G. Strobl. Eur. Phys. J. E, 3:165, 2000.CrossRefGoogle Scholar
  9. [9]
    G. Strobl. Eur. Phys. J. E, 18:295, 2005.CrossRefGoogle Scholar
  10. [10]
    B. Heck, T. Hugel, M. Iijima, E. Sadiku, and G. Strobl. New J. Physics, 1:17, 1999.CrossRefGoogle Scholar
  11. [11]
    T.Y. Cho, B. Heck, and G. Strobl. Colloid Polym Sci, 282:825, 2004.CrossRefGoogle Scholar
  12. [12]
    M. Iijima and G. Strobl. Macromolecules, 33:5204, 2000.CrossRefGoogle Scholar
  13. [13]
    M. Al-Hussein and G. Strobl. Macromolecules, 35:8515, 2002.CrossRefGoogle Scholar
  14. [14]
    Q. Fu, B. Heck, G. Strobl, and Y. Thomann. Macromolecules, 34:2502, 2001.CrossRefGoogle Scholar
  15. [15]
    T. Hugel. Diplomarbeit. Fakultät für Physik, Universität Freiburg, 1999.Google Scholar
  16. [16]
    T. Hippler, S. Jiang, and G. Strobl. Macromolecules, 38:9396, 2005.CrossRefGoogle Scholar
  17. [17]
    B. Heck, G. Strobl, and M. Grasruck. Eur. Phys. J. E, 11:117, 2003.CrossRefGoogle Scholar
  18. [18]
    M. Al-Hussein and G. Strobl. Eur. Phys. J. E, 6:305, 2001.CrossRefGoogle Scholar
  19. [19]
    M. Grasruck and G. Strobl. Macromolecules, 36:86, 2003.CrossRefGoogle Scholar
  20. [20]
    M. Al-Hussein and G. Strobl. Macromolecules, 35:1672, 2002.CrossRefGoogle Scholar
  21. [21]
    A.A. Minakov, D.A. Mordvintsev, and C. Schick. Polymer, 45:3755, 2004.CrossRefGoogle Scholar
  22. [22]
    E.B. Sirota and A.B. Herhold. Science, 283:529, 1999.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Gert Strobl
    • 1
  1. 1.Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations