Insights into Polymer Crystallization from In-situ Atomic Force Microscopy

  • Jamie K. Hobbs
Part of the Lecture Notes in Physics book series (LNP, volume 714)


In-situ observation of polymer crystallization with atomic force microscopy is rapidly becoming a standard method, providing an increasing wealth of real-space information on the growth process at the molecular scale. Here, in-situ studies of dendritic thin film growth are extended to polyethylene, and the conditions for the onset of flat-on crystal growth and dendritic growth are given. Crystallization of oriented films is studied to provide accurate measurements of lamellar growth rates and their spatial and temporal variation. The use of AFM as a tool for the observation of intermediate phases is discussed in light of recent observations on model systems, and it is concluded that AFM under standard conditions is unlikely to discern between two crystal-like phases, but should discern between two meltlike phases. Finally, the recent development of rapid scanning AFM (VideoAFM™) is outlined, and an application which exemplifies the necessity of such high speed techniques is given.


Atomic Force Microscopy Polyethylene Oxide Phase Image Dendritic Growth Polymer Crystallization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.K. Hobbs in “Polymer Crystallization: Observations, Concepts and Interpretations” Springer-Verlag, Berlin Eds J.U. Sommer and G. Reiter, 82–95 (2003)Google Scholar
  2. 2.
    L. Granasy, T. Pusztai, T. Borzsonyi, J.A. Warren, J.F. Douglas: Nature Materials, 3(9), 645 (2004)CrossRefGoogle Scholar
  3. 3.
    L. Granasy, T. Pusztai, G. Tegze, J.A. Warren, J.F. Douglas: Phys. Rev. E. 72, 011605 (2005)CrossRefGoogle Scholar
  4. 4.
    A.D.L. Humphris, J.K. Hobbs, M.J. Miles: Appl. Phys. Lett. 83(1), 6 (2003)CrossRefGoogle Scholar
  5. 5.
    A.D.L. Humphris, M.J. Miles, J.K. Hobbs: Appl. Phys. Letts. 86, 034106 (2005)CrossRefGoogle Scholar
  6. 6.
    G. Strobl: Eur. Phys. J. E. 18(3), 295 (2005)CrossRefGoogle Scholar
  7. 7.
    H. Xu, D. Shirvanyants, K.L. Beers, K. Matyjaszewski, A.V. Dobrynin, M. Runinstein, S.S. Sheiko: Phys. Rev. Letts. 94, 237801 (2005)CrossRefGoogle Scholar
  8. 8.
    E. Ben-Jacob: Contemp. Phys. 34, 247 (1993)Google Scholar
  9. 9.
    J.S. Langer: Science 243, 1150 (1989)CrossRefGoogle Scholar
  10. 10.
    B. Utter, E. Bodenschatz: Phys. Rev. E. 66, 051604 (2002)CrossRefGoogle Scholar
  11. 11.
    B. Utter, R. Ragnarsson, E. Bodenschatz: Phys. Rev. Letts. 86(20), 4604 (2001)CrossRefGoogle Scholar
  12. 12.
    G. Reiter, J-U. Sommer: J. Chem. Phys. 112(9), 4376 (2000)CrossRefGoogle Scholar
  13. 13.
    K. Taguchi, H. Miyaji, K. Izumi, A. Hoshino, Y. Miyamoto, R. Kokawa: Polymer 42(17), 7443 (2001)CrossRefGoogle Scholar
  14. 14.
    V. Ferreiro, J.F. Douglas, J. Warren, A. Karim: Phys. Rev. E 65(5), 051606 (2002)CrossRefGoogle Scholar
  15. 15.
    H.D. Keith, F.J. Padden, B. Lotz, J.C. Wittmann: Macromolecules 22, 2230 (1989)CrossRefGoogle Scholar
  16. 16.
    J.K. Hobbs, A.D.L. Humphris, M.J. Miles in “Applications of scanned probe microscopes to polymers” ACS symposium series 897, eds J.D. Batteas, C.A. Michaels, G.C. Walker, ACS, Washington, DC (2005)Google Scholar
  17. 17.
    W.W. Mullins, R.W. Sekerka: J. Appl. Phys. 34, 323 (1963)CrossRefGoogle Scholar
  18. 18.
    J.K. Hobbs, A.D.L. Humphris, M.J. Miles: Macromolecules 34, 5508 (2001)CrossRefGoogle Scholar
  19. 19.
    J.K. Hobbs: Polymer, in press Google Scholar
  20. 20.
    G. Strobl: {Eur. Phys. J.} E, 3, 165 (2000)CrossRefGoogle Scholar
  21. 21.
    A. Keller, M. Hikosaka, S. Rastogi, A. Toda, P.J. Barham, G. Goldbeck-wood: J. Mater. Sci., 29(10), 2579 (1994)CrossRefGoogle Scholar
  22. 22.
    P.D. Olmsted, W.C.K. Poon, T.C.B. McLeish, N.J. Terrill, A.J. Ryan: Phys. Rev. Lett. 81, 373 (1998)CrossRefGoogle Scholar
  23. 23.
    M. Imai, K. Mori, T. Mizukami, K. Kaji, T. Kanaya: Polymer 33(21), 4451 (1992)CrossRefGoogle Scholar
  24. 24.
    J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings: Appl. Phys. Lett. 72(20), 2613 (1998)CrossRefGoogle Scholar
  25. 25.
    J. Tamayo, R. Garcia: Appl. Phys. Lett. 73(20), 2926 (1998)CrossRefGoogle Scholar
  26. 26.
    J.K. Hobbs, R. Register: Macromolecules, 39, 703 (2006)CrossRefGoogle Scholar
  27. 27.
    G. Reiter, G. Castelein, J-U. Sommer, A. Rottele, T. Thurn-Albrecht: Phys. Rev. Lett. 87(22), 226101-1 (2001)Google Scholar
  28. 28.
    E.L. Heeley, C.K. Poh, W. Li, A. Maidens, W. Bras, I.P. Dolbnya, A.J. Gleeson, N.J. Terrill, J.P.A. Fairclough, P.D. Olmsted, R.I. Ristic, M.J. Hounslow, A.J. Ryan: Faraday Discussions 122, 343 (2003)CrossRefGoogle Scholar
  29. 29.
    R. Pearce, G.J. Vancso: Macromolecules 30(19), 5843 (1997)CrossRefGoogle Scholar
  30. 30.
    L.G.M. Beekmans, D.W. van der Meer, G.J. Vancso: Polymer 43(6), 1887 (2002)CrossRefGoogle Scholar
  31. 31.
    A.K. Winkel, J.K. Hobbs, M.J. Miles: Polymer, 41(25), 8791 (2000)CrossRefGoogle Scholar
  32. 32.
    M.W. Tian, J. Loos: E-Polymers, 51 (2003)Google Scholar
  33. 33.
    N. Dubreuil, S. Hocquet, M. Dosiere, D.A. Ivanov: Macromolecules 37(1), 1 (2004)CrossRefGoogle Scholar
  34. 34.
    J.K. Hobbs, C. Vasilev, A.D.L. Humphris: Polymer 46, 10226 (2005)CrossRefGoogle Scholar
  35. 35.
    J.K. Hobbs, C. Vasilev, A.D.L. Humphris: The Analyst 131, 251 (2006)CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jamie K. Hobbs
    • 1
  1. 1.Department of ChemistryUniversity of SheffieldUK

Personalised recommendations