Polymer Crystallization Under High Cooling Rate and Pressure: A Step Towards Polymer Processing Conditions

  • Andrea Sorrentino
  • Felice De Santis
  • Giuseppe Titomanlio
Part of the Lecture Notes in Physics book series (LNP, volume 714)


Even if many efforts have been spent on the explanation of the mechanisms involved during the polymer crystallization in typical industrial processing conditions, they are still only partially understood. Up to now, due to the remarkable experimental difficulties, in literature only few systematic works have been focused on the effect of high cooling rates and/or solidification pressure on the mechanical and physical properties of the semi-crystalline polymers. In this work, we present two experimental apparatuses, designed and assembled with the aim of obtaining polymer samples under controlled temperature and pressure histories. High cooling rates and pressure, comparable with those experienced by the polymer during industrial processes, were attained in order to produce polymer samples with different morphologies. Exemplar results obtained with Syndiotactic Polystyrene (sPS) show that high cooling rates as well as external pressure are important factors for inducing changes in crystalline polymeric structures.


Cool Rate Crystallization Rate High Cool Rate Pressure History Polymer Crystallization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Strobl: Eur. Phys. J. E 18, 295 (2005)CrossRefGoogle Scholar
  2. 2.
    S.Z.D. Cheng, B. Lotz: Polymer 46, 8662 (2005)Google Scholar
  3. 3.
    B. Wunderlich: Macromolecular physics. Crystal structure, morphology, defect, vol 1 (Academic Press, New York, 1973)Google Scholar
  4. 4.
    A. Ziabicki, L. Jarecki, A. Sorrentino: e-Polymers 072 (2004)Google Scholar
  5. 5.
    K. Fischer, A. Schram Angew Chem 68, 406 (1956)Google Scholar
  6. 6.
    J.H. Magill: British Journal of Applied Physics 12, 618 (1961)CrossRefGoogle Scholar
  7. 7.
    J.H. Magill: Polymer 2, 221 (1961)CrossRefGoogle Scholar
  8. 8.
    Z. Ding, J.E. Spruiell: J Polym Sci B 34, 2783 (1996)CrossRefGoogle Scholar
  9. 9.
    Z. Ding, J.E. Spruiell: J Polym Sci B 35, 1077 (1997)CrossRefGoogle Scholar
  10. 10.
    J.E. Spruiell, P. Supaphol: J Appl Polym Sci 86, 1009 (2002)CrossRefGoogle Scholar
  11. 11.
    V. Brucato, F. De Santis, A. Giannattasio et al: Macromol. Symp. 185, 181 (2002)Google Scholar
  12. 12.
    G. Lamberti, F. De Santis, V. Brucato et al: Appl. Phys. A 78, 895 (2004)CrossRefGoogle Scholar
  13. 13.
    B. Wunderlich, T. Arakawa: J. Polym. Sci. A 2, 6397 (1964)Google Scholar
  14. 14.
    D.C. Bassett, B. Turner: Nature Phys. Sci. 240, 146 (1972)Google Scholar
  15. 15.
    D.C. Bassett, S. Block, G.J. Piermarini: J. Appl. Phys. 45, 4146 (1974)CrossRefGoogle Scholar
  16. 16.
    C. Angelloz, R. Fulchiron, A. Douillard et al: Macromolecules 33, 4138 (2000)CrossRefGoogle Scholar
  17. 17.
    G.W.H. Hohne, Thermochim. Acta 332, 115 (1999)CrossRefGoogle Scholar
  18. 18.
    Y. Kojima, M. Takahara, T. Matsuoka et al: J Appl Polym Sci 80, 1046 (2001)CrossRefGoogle Scholar
  19. 19.
    B. Wunderlich, L. Mellilo: Makromol. Chem. 118, 250 (1968)CrossRefGoogle Scholar
  20. 20.
    T. Hatakeyama, H. Kanetsuna, H. Kaneda et al: J. Macromol. Sci. B10, 359 (1974)Google Scholar
  21. 21.
    J. He, P. Zoller: J. Polym. Sci. B 32, 1049 (1994)CrossRefGoogle Scholar
  22. 22.
    A.M. Evans, J.C. Kellar, J. Knowles et al: Polym. Eng. Sci. 37, 153 (1997)CrossRefGoogle Scholar
  23. 23.
    R.C. Lopez, C.L. Cieslinski, R.D. Wesson: Polymer 36, 2331 (1995)CrossRefGoogle Scholar
  24. 24.
    Y. Ulcer, M. Cakmak, J. Miao et al: J. Appl. Polym. Sci. 60, 669 (1996)CrossRefGoogle Scholar
  25. 25.
    R. Pantani, A. Sorrentino, V. Speranza et al: In Proc. PPS 2002, (Taipei Taiwan, 2002)Google Scholar
  26. 26.
    R. Pantani, A. Sorrentino, V. Speranza et al: In Proc. ICHEAP 6, (Pisa Italy, 2003)Google Scholar
  27. 27.
    C. De Rosa, G. Guerra, V. Petraccone et al: Polym. J. 23, 1435 (1991)CrossRefGoogle Scholar
  28. 28.
    A. Sorrentino, M. Tortora V. Vittoria: New developments in syndiotactic polystyrene. In: Recent Res. Devel. Appl. Pol. Sci., (2006): ISBN: 81-308-0129-9Google Scholar
  29. 29.
    Z. Sun, R.J. Morgan, D.N. Lewis: Polymer 33, 660 (1992)CrossRefGoogle Scholar
  30. 30.
    F. De Santis: Influence of solidification conditions on structural evolution of thermoplastic polymers. PhD Thesis, University of Palermo, ISBN 88-7676-227-2 (2003)Google Scholar
  31. 31.
    R.J. Samuels, Structured polymer properties: the identification, interpretation, and application of crystalline polymer structure, (New York: John Wiley 1974)Google Scholar
  32. 32.
    A. Sorrentino, D. Picarella, R. Pantani et al: Review Scientific Instruments 68, 245 (2005)Google Scholar
  33. 33.
    A. Sorrentino: Injection Moulding of Syndiotactic Polystyrene. PhD Thesis, University of Salerno, ISBN 88-7897-001-8 (2005)Google Scholar
  34. 34.
    L.E. Alexander: X-Ray diffraction Methods in Polymer Science, (Krieger Publishing Co., Florida 1985)Google Scholar
  35. 35.
    G. Eder, H. Janeschitz-Kriegl In: Transport Phenomena in Processing, ed by S.I. Guceri (Technomic Publ. Co. 1993) pp. 1031–1042Google Scholar
  36. 36.
    V.B.F. Mathot: Calorimetry and Thermal Analysis (Hanser, Munich 1994)Google Scholar
  37. 37.
    C.S.J. van Hooy-Corstjens, G.W.H. Hohne, S. Rastogi: Macromolecules 38, 1814 (2005)CrossRefGoogle Scholar
  38. 38.
    A. Sorrentino, R. Pantani, G. Titomanlio: In Proc. PPS 21, (Leipzig, Germany 2005)Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Andrea Sorrentino
    • 1
  • Felice De Santis
    • 1
  • Giuseppe Titomanlio
    • 1
  1. 1.Department of Chemical and Food EngineeringUniversity of SalernoFiscianoItaly

Personalised recommendations