Advertisement

Distributed Primality Proving and the Primality of (23539 + 1)/3

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 473)

Abstract

We explain how the Elliptic Curve Primality Proving algorithm can be implemented in a distributed way. Applications are given to the certification of large primes (more than 500 digits). As a result, we describe the successful attempt at proving the primality of the 1065-digit (23539+1)/3, the first ordinary Titanic prime.

Keywords

Elliptic Curve Finite Field Elliptic Curf Prime Divisor Systolic Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    L. M. Adleman, C. Pomerance, and R. S. Rumely. On distinguishing prime numbers from composite numbers. Annals of Math. 117 (1983), 173–206.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Rapport de Recherche 1256, INRIA, Juin 1990.Google Scholar
  3. [3]
    P. T. Bateman, J. L. Selfridge, and S. S. Wagstaff, Jr. The new Mersenne conjecture. American Mathematical Monthly 96,2 (1989), 125–128.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    P. Beauchemin, G. Brassard, C. Crépeau, C. Goutier, and C. Pomerance. The generation of random numbers that are probably prime. J. Cryptology 1 (1988), 53–64.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    P. Bertin, D. Roncin, and J. Vuillemin. Introduction to programmable active memories. In Proc. of the Internat. Conf. on Systolic Arrays (1989).Google Scholar
  6. [6]
    W. Bosma and M.-P. van der Hulst. Faster primality testing. To appear in Proc. Eurocrypt’ 89.Google Scholar
  7. [7]
    G. Brassard. Modern Cryptology, vol. 325 of Lect. Notes in Computer Science. Springer-Verlag, 1988.Google Scholar
  8. [8]
    J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr.Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, 2 ed. No. 22 in Contemporary Mathematics. AMS, 1988.Google Scholar
  9. [9]
    J. W. S. Cassels. Diophantine equations with special references to elliptic curves. J. London Math. Soc. 41 (1966), 193–291.MathSciNetCrossRefGoogle Scholar
  10. [10]
    H. Cohen and A. K. Lenstra. Implementation of a new primality test. Math. Comp. 48,177 (1987), 103–121.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    H. Cohen and H. W. Lenstra, Jr. Primality testing and Jacobi sums. Math. Comp. 42,165 (1984), 297–330.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    C. Couvreur and J. Quisquater. An introduction to fast generation of large prime numbers. Philips J. Research 37 (1982), 231–264.MathSciNetGoogle Scholar
  13. [13]
    S. Goldwasser and J. K ilian. Almost all primes can be quickly certified. In Proc. 18th STOC (Berkeley, 1986), pp. 316–329.Google Scholar
  14. [14]
    D. Gordon. Strong primes are easy to find. In Proc. Eurocrypt’ 84 (1984), Springer, pp. 216–223.Google Scholar
  15. [15]
    J.-C. Hervé, F. Morain, D. Salesin, B. Serpette, J. Vuillemin, and P. Zimmermann. Bignum: A portable and efficient package for arbitrary precision arithmetic. Rapport de Recherche 1016, INRIA, avril 1989.Google Scholar
  16. [16]
    D. Husemöller. Elliptic curves, vol. 111 of Graduate Texts in Mathematics. Springer, 1987.Google Scholar
  17. [17]
    D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms. Addison-Wesley, 1981.Google Scholar
  18. [18]
    A. K. Lenstra. Cryptology and computational number theory. AMS, 1989, ch. Primality testing. Lecture Notes, August 6–7, 1989, Boulder, Colorado.Google Scholar
  19. [19]
    A. K. Lenstra and M. S. Manasse. Factoring by electronic mail. To appear in Proc. Eurocrypt’ 89, 1989.Google Scholar
  20. [20]
    H. W. Lenstra, Jr. Elliptic curves and number theoretic algorithms. Tech. Rep. Report 86-19, Math. Inst., Univ. Amsterdam, 1986.Google Scholar
  21. [21]
    H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Math. 126 (1987), 649–673.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    P. L. Montgomery. Modular multiplication without trial division. Math. Comp. 44,170 (April 1985), 519–521.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Math. Comp. 48,177 (January 1987), 243–264.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    F. Morain. Atkin’s test: news from the front. To appear in Proc. Eurocrypt’ 89.Google Scholar
  25. [25]
    F. Morain. Elliptic curves, primality proving and some Titanic primes. To appear in Actes des Journées Arithmétiques, Luminy 1989.Google Scholar
  26. [26]
    F. Morain. Implementation of the Atkin-Goldwasser-Kilian primality testing algorithm. Rapport de Recherche 911, INRIA, Octobre 1988.Google Scholar
  27. [27]
    F. Morain. Construction of Hilbert class fields of imaginary quadratic fields and dihedral equations modulo p. Rapport de Recherche 1087, INRIA, Septembre 1989.Google Scholar
  28. [28]
    F. Morain. Résolution d’équations de petit degré modulo de grands nombres premiers. Rapport de Recherche 1085, INRIA, Septembre 1989.Google Scholar
  29. [29]
    F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using addition-subtraction chains. Rapport de Recherche 983, INRIA, Mars 1989.Google Scholar
  30. [30]
    D. A. Plaisted. Fast verification, testing and generation of large primes. Theoretical Computer Science 9 (1979), 1–16.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    H. C. Pocklington. The determination of the prime and composite nature of large numbers by Fermat’s theorem. Proc. Cambridge Philos. Soc. 18 (1914–1916), 29–30.Google Scholar
  32. [32]
    R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp. 44 (1985), 483–494.MathSciNetzbMATHGoogle Scholar
  33. [33]
    R. D. Silverman. Parallel implementation of the quadratic sieve. The Journal of Supercomputing 1,3 (1987).Google Scholar
  34. [34]
    J. T. Tate. The airthmetic of elliptic curves. Inventiones Math. 23 (1974), 179–206.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    M.-P. van der Hulst. Timings for (23539 + 1)/3. Email, February 1990.Google Scholar
  36. [36]
    H. C. Williams and H. Dubner. The primality of R1031. Math. Comp. 47,176 (1986), 703–711.MathSciNetzbMATHGoogle Scholar
  37. [37]
    M. C. Wunderlich. A performance analysis of a simple prime-testing algorithm. Math. Comp. 40,162 (1983), 709–714.MathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    S. Yates. Titanic primes. J. Recr. Math. 16 (1983/84), 250–260.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  1. 1.Domaine de VoluceauInstitut National de Recherche en Informatique et en Automatique (INRIA)LE CHESNAY CEDEXFrance
  2. 2.Département de MathématiquesUniversité Claude BernardVilleurbanne CEDEXFrance

Personalised recommendations