Prediction of Viscoelastic Properties and Shear Stability of Polymers in Solution

  • Gabriela Grigorescu
  • Werner-Michael Kulicke
Part of the Advances in Polymer Science book series (POLYMER, volume 152)


The rheological behaviour of dissolved polymers is very complex. Both experiment and theory in this field have undergone rapid development in recent years. Therefore, we describe the possibilities of predicting the viscoelastic properties as well as the shear stability using the entanglement and reptation concepts and exemplifying mainly with narrow distributed polystyrene samples. The viscoelastic properties are discussed in relation to molar mass, concentration, solvent quality, chemical structure and shear rate. The structure-property relationships derived here permit the prediction of both the zero-shear viscosity, η0, as well as the shear rate dependent viscosity η(\( \dot \gamma \)). These relationships can be extended to non-Newtonian fluids. For solutions of coiled polymers in a thermodynamically good solvent, five distinct states of solution are formed: ideally dilute solution, semi-dilute particle solution, semi-dilute network solution, concentrated particle solution and concentrated network solution. For non-homogeneous, semi-dilute (moderately concentrated) solutions the slope in the linear region of the flow curve [η=f(\( \dot \gamma \))] must be standardised against the overlap parameter c· [η ]. Furthermore, it is possible to predict the onset of shear degradation of polymeric liquids subjected to a laminar velocity field on the basis of molecular modeling. Also described is the phenomenon that the elastic nature (first normal stress difference) may overwhelm the viscous nature (shear stress) at relatively low shear rates. This high elasticity can cause deviation from laminar flow conditions and the onset conditions can be detected by plotting Sr=f(τ12).


Viscoelasticity Polymer solution State of solution Shear stability criteria Flow irregularities Weissenberg number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheftel JC, Cuq JL, Lorient D ( 1992) Lebensmittel-Proteine. Behr’s, Hamburg, p 88Google Scholar
  2. 2.
    Harris P ( 1990) Food gels. Elsevier Applied Science, New York, p 208Google Scholar
  3. 3.
    Walter RH (1998) Polysaccharide association structures in food. Marcel Dekker, New York, p 289Google Scholar
  4. 4.
    Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides. Theory and applications. Padstow, Cornell, p 135Google Scholar
  5. 5.
    Laba D (1993) Rheological properties of cosmetics and toiletries. Marcel Dekker, New York, p 55Google Scholar
  6. 6.
    Casale A, Porter RSA (1978) Polymer stress reactions, vol 1. Academic Press, New York, p 70Google Scholar
  7. 7.
    Koedritz LF, Harvey AH, Honarpour M (1989) Introduction to petroleum reservoir analysis. Gulf, HoustonGoogle Scholar
  8. 8.
    Gampert B (1985) The influence of polymer additives on velocity and temperature fields. Springer, Berlin Heidelberg New York, p 371Google Scholar
  9. 9.
    Kulicke W-M, Gräger H, Kötter M (1989) Adv Polym Sci 89:1CrossRefGoogle Scholar
  10. 10.
    Glass JE. (1986) Water-soluble polymers. Beauty with performance. American Chemical Society, Washington, DC, p 183Google Scholar
  11. 11.
    Hebeish A, El-Zairy MR, El-Rafie MH, Higazy A, El-Sisy F (1991) Starch 43:98CrossRefGoogle Scholar
  12. 12.
    Woffindin C, Hoenich NA (1992) JNS Nephrol Dialysis Transplant 7:340Google Scholar
  13. 13.
    Beretka J (1992) J Chem Technol BioTechnol 55:269CrossRefGoogle Scholar
  14. 14.
    Schulz DN, Glass JE (1991) Polymers as rheology modifiers. American Chemical Society, Washington, DC, p 322Google Scholar
  15. 15.
    Carr ME (1992) Starch 44:219CrossRefGoogle Scholar
  16. 16.
    Paine AJ (1990) J Colloid Interface Sci 138:157CrossRefGoogle Scholar
  17. 17.
    Cohen E (1993) Arch Insect Biochem Physiol 22:245CrossRefGoogle Scholar
  18. 18.
    Glass JE, Swift G ( 1990) Agricultural and synthetic polymers. American Chemical Society, Washington, DC, p 33Google Scholar
  19. 19.
    Kniewske R, Kulicke W-M (1983) Makromol Chem 184:2173CrossRefGoogle Scholar
  20. 20.
    Kulicke W-M, Kniewske R (1984) Rheol Acta 23:75CrossRefGoogle Scholar
  21. 21.
    Kulicke W-M, Griebel Th, Bouldin M (1991) Polymer News 16:39Google Scholar
  22. 22.
    Bouldin M, Kulicke W-M, Kehler H (1988) Colloid Polym Sci 266:793CrossRefGoogle Scholar
  23. 23.
    Kulicke W-M (1986) Fließverhalten von Stoffen und Stoffengemischen. Hüthig & Wepf, Basel, p 218Google Scholar
  24. 24.
    Kulicke W-M, Klein J, Kniewske R (1982) Progress Polym Sci 8:373CrossRefGoogle Scholar
  25. 25.
    Kulicke W-M, Haas R (1984) Ind Eng Chem Fundam 23:308CrossRefGoogle Scholar
  26. 26.
    Haas R, Kulicke W-M (1984) Ind Eng Chem Fundam 23:316CrossRefGoogle Scholar
  27. 27.
    Schramm G (1994) A practical approach to rheology and rheometry. Haake, Karlsruhe, p 146Google Scholar
  28. 28.
    Carreau PJ, De Kee DCR, Chhabra RP (1997) Rheology of polymeric systems. Principles and applications. Hanser, Munich, p 35Google Scholar
  29. 29.
    Macosko CW (1994) Rheology. Principles, measurements and applications. VCH, New York, p 86Google Scholar
  30. 30.
    Bird RB, Armstrong RC, Hassager O (1977) Dynamics of polymeric liquids. Wiley, New YorkGoogle Scholar
  31. 31.
    Mark JE, Eisenberg A, Graessley WW, Mandelkern L, Koenig JL (1984) Physical properties of polymers. American Chemical Society, Washington, DCGoogle Scholar
  32. 32.
    Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, AmsterdamGoogle Scholar
  33. 33.
    Rouse PE (1953) J Chem Phys 21:1272CrossRefGoogle Scholar
  34. 34.
    Zimm BH (1956) J Chem Phys 24:269CrossRefGoogle Scholar
  35. 35.
    Bueche F (1952) J Chem Phys 20:1959CrossRefGoogle Scholar
  36. 36.
    Debye P, Bueche F (1948) J Chem Phys 16:573CrossRefGoogle Scholar
  37. 37.
    Bueche F (1956) J Chem Phys 25:599CrossRefGoogle Scholar
  38. 38.
    Berry GC, Fox TG (1968) Adv Polym Sci 5:261CrossRefGoogle Scholar
  39. 39.
    Ferry JD, Landel RF, Williams ML (1955) J Appl Phys 26:359CrossRefGoogle Scholar
  40. 40.
    Graessley W, Hazelton R, Lindeman R (1967) Trans Soc Rheol 11:267CrossRefGoogle Scholar
  41. 41.
    Graessley W (1967) J Chem Phys 47:1942CrossRefGoogle Scholar
  42. 42.
    Graessley W (1965) J Chem Phys 43:2696CrossRefGoogle Scholar
  43. 43.
    De Gennes PG (1971) J Chem Phys 55:572CrossRefGoogle Scholar
  44. 44.
    De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, New YorkGoogle Scholar
  45. 45.
    Leger L, De Gennes PG (1982) Annu Rev Phys Chem 33:49CrossRefGoogle Scholar
  46. 46.
    Doi M (1983) J Polym Sci Polym Phys Ed 21:667CrossRefGoogle Scholar
  47. 47.
    Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, 234Google Scholar
  48. 48.
    Doi M, Edwards SF (1978) J Chem Soc Farad Trans 74:1802CrossRefGoogle Scholar
  49. 49.
    Han CD, Jhon MS (1986) J Appl Polym Sci 32:3809CrossRefGoogle Scholar
  50. 50.
    Han CD (1976) Rheology in polymer processing. Academic Press, London, p 61Google Scholar
  51. 51.
    Forsman WC (1989) Polymers in solution. Theoretical considerations and newer methods of characterization. Plenum Press, New York, p 145Google Scholar
  52. 52.
    Lodge AS (1964) Elastic liquids. Academic Press, New YorkGoogle Scholar
  53. 53.
    Simha R, Zakin L (1962) J Coll Sci 17:270CrossRefGoogle Scholar
  54. 54.
    De Gennes PG (1976) Macromolecules 9:587CrossRefGoogle Scholar
  55. 55.
    Klein J (1978) Macromolecules 11:852CrossRefGoogle Scholar
  56. 56.
    Fujita H (1990) Polymer solutions. Elsevier, Amsterdam, p 182Google Scholar
  57. 57.
    Graessley WW (1974) Adv Polym Sci 16:49Google Scholar
  58. 58.
    Baumgärtel M, Willenbacher N (1996) Rheol Acta 35:168CrossRefGoogle Scholar
  59. 59.
    Masuda T, Kitagawa K, Onogi S (1970) Polymer J (Japan) 1:418Google Scholar
  60. 60.
    Kulicke W-M, Klare J (1980) Angew Makromol Chem 84:67CrossRefGoogle Scholar
  61. 61.
    Casale A, Moroni A, Civardi E (1976) Angew Makromol Chem 53:1CrossRefGoogle Scholar
  62. 62.
    Casale A, Porter RS, Johnson JF (1971) J Macromol Sci-Rvs Macromol Chem C5:387Google Scholar
  63. 63.
    Huggins ML (1942) J Am Chem Soc 64:2716CrossRefGoogle Scholar
  64. 64.
    Daoud M, Cotton JP, Farnoux B, Jannink G, Sarma G, Benoit H, Dupressix R, Picot C, De Gennes PG (1975) Macromolecules 6:804CrossRefGoogle Scholar
  65. 65.
    Zakin JL, Wu R, Luh H, Mayhan KG (1976) J Polym Sci Polym Phys Ed 14:299CrossRefGoogle Scholar
  66. 66.
    Schurz J (1975) Rheol Acta 14:293CrossRefGoogle Scholar
  67. 67.
    Onogi S, Kobayashi TKojima Y, Taniguchi Y (1963) J Appl Polym Sci 7:847CrossRefGoogle Scholar
  68. 68.
    Griebel TH, Kulicke W-M, Kniewske R (1992) Mehl und Brot 5:154Google Scholar
  69. 69.
    Arendt O, Kulicke W-M (1998) Angew Makromol Chem 259:61CrossRefGoogle Scholar
  70. 70.
    Böhm N., Kulicke W-M (1999) Carbohydr Res 293Google Scholar
  71. 71.
    Robinson G, Ross-Murphy SB, Morris ER (1982) Carbohydr Res 107:17CrossRefGoogle Scholar
  72. 72.
    Abdel-Alim AH, Balke ST, Hamielec AE (1973) J Appl Polym Sci 17:1431CrossRefGoogle Scholar
  73. 73.
    Attane P, LeRoy P, Picard JM, Turrel GJ (1981) Non-Newtonian Fluid Mech 9:13CrossRefGoogle Scholar
  74. 74.
    Ferry JD (1978) Pure Appl Chem 50:299CrossRefGoogle Scholar
  75. 75.
    Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York, p 38Google Scholar
  76. 76.
    Stratton RA (1966) J Colloid Interface Sci 22:517CrossRefGoogle Scholar
  77. 77.
    Wissbrunn KF, Metzner AB, Rangel-Nafaille C (1984) Macromolecules 17:1187CrossRefGoogle Scholar
  78. 78.
    Kehler H, Kulicke W-M (1986) Chem Eng Technol 10:802Google Scholar
  79. 79.
    Elias HG (1996) Polymere von Monomeren und Makromolekülen zu Werkstoffen eine Einführung. Hüthig & Wepf, Heidelberg, p 273Google Scholar
  80. 80.
    Vinogradov GV, Malkin AV (1980) Rheology of polymers. Springer, Berlin Heidelberg New York, p 128Google Scholar
  81. 81.
    Williams MC (1967) AIChE J 13:534CrossRefGoogle Scholar
  82. 82.
    Cross MM (1969) J Appl Polym Sci 13:765CrossRefGoogle Scholar
  83. 83.
    Kulicke W-M, Porter RS (1981) J Polym Sci Ed 19:1173CrossRefGoogle Scholar
  84. 84.
    Middleman S (1977) Fundamentals of polymer processing. McGraw-Hill, New York, chap 15Google Scholar
  85. 85.
    Kulicke W-M, Kiss G, Porter RS (1977) Rheol Acta 16:568CrossRefGoogle Scholar
  86. 86.
    Petersen JF, Rautenbach R, Schümmer P (1975) Rheol Acta 14:968CrossRefGoogle Scholar
  87. 87.
    Jackson R, Kaye A (1966) Br J Appl Phys 17:1355CrossRefGoogle Scholar
  88. 88.
    Kulicke W-M, Porter RS (1979) J Appl Polym Sci 23:953CrossRefGoogle Scholar
  89. 89.
    Kulicke W-M, Jeberien HE, Kiss G, Porter RS (1979) Rheol Acta 18:711CrossRefGoogle Scholar
  90. 90.
    Pearsom JRA (1976) J Fluid Mech 4:163Google Scholar
  91. 91.
    Walters K (1975) Rheometry. Wiley, New York, p 65Google Scholar
  92. 92.
    King MJ, Waters ND (1970) Rheol Acta 9:164CrossRefGoogle Scholar
  93. 93.
    Fewell ME, Hellums JD (1974) AlChE Winter Conf Washington, DC, Dec 1–5Google Scholar
  94. 94.
    Turian RM (1972) Ind Eng Chem Fundam 11:361CrossRefGoogle Scholar
  95. 95.
    Gleisle W (1976) Rheol Acta 15:305CrossRefGoogle Scholar
  96. 96.
    Giesekus H (1965) Rheol Acta 4:85CrossRefGoogle Scholar
  97. 97.
    Lodge AS (1964) Elastic liquids. Academic Press, New YorkGoogle Scholar
  98. 98.
    Lodge AS (1974) Body tensor fields in continuum mechanics. Academic Press, New YorkGoogle Scholar
  99. 99.
    Adams N, Lodge AS (1964) Phil Trans R Soc London A256:149CrossRefGoogle Scholar
  100. 100.
    Southern JH, Paul DR (1974) Polym Eng Sci 14:560CrossRefGoogle Scholar
  101. 101.
    Kulicke W-M, Böse N (1982) Polym Bull 7:205CrossRefGoogle Scholar
  102. 102.
    Kulicke W-M, Hörl H-H (1983) Angew Makromol Chem 116:149CrossRefGoogle Scholar
  103. 103.
    Oertel R, Kulicke W-M (1991) Rheol Acta 30:140CrossRefGoogle Scholar
  104. 104.
    Kulicke W-M, Reinhardt U (1993) Polym Mat Sci Eng 69:491Google Scholar
  105. 105.
    Reinhardt UT, Eidam D, Kulicke W-M (1994) J Getreide, Mehl und Brot 4:56Google Scholar
  106. 106.
    Kulicke W-M, Duhm L, Schuch A (1994) Chem-Ing-Technik 12:1643CrossRefGoogle Scholar
  107. 107.
    Kulicke W-M, Kull AH, Kull W, Thielking H, Engelhardt J, Pannek J-B (1996) Polymers 13:2723CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Gabriela Grigorescu
    • 1
  • Werner-Michael Kulicke
    • 2
  1. 1.Laboratoire des Polymères et Biomatériaux EPFL-EcublensInstitut de Genie Chimique ILausanneSuisse
  2. 2.Institut für Technische und Makromolekulare ChemieUniversität HamburgHamburgGermany

Personalised recommendations