Skip to main content

Mathematical Methods for Data Inversion

  • Conference paper
  • First Online:
Light Scattering from Microstructures

Part of the book series: Lecture Notes in Physics ((LNP,volume 534))

  • 947 Accesses

Abstract

The study of ill-posed linear inverse problems, characterised by Fredholm equations of the first kind, has important applications in many areas of science and technology. Problems of this type introduce some loss of information between what we may call a generalised “object” and its “image” under the linear mapping. This loss of information often makes the attempted inversion of image to object very diffcult. In practice the image is usually a discrete set of observations but the mapping may be retained essentially as a finite-rank integral operator using a fine discretisation throughout in the object space. This gives a very useful “automatic” interpolation of the recovered object at a sampling rate much higher than the conditioning of the problem would otherwise allow. Sub-micron particle sizing by Photon Correlation Spectroscopy is a problem where this type of inversion difficulty arises. Work is presented here which attempts to add in some of the lost information by making use of the a-priori constraints of positivity and known moments. This is achieved by the dual method of quadratic programming using some spectacular new mathematical results in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foord, R., Jakeman, E., Oliver, C. J., Pike, E. R., Blagrove, R. J, Wood, E. and Peacock, A. R., 1970, Nature, Lond., 227, 242

    Google Scholar 

  2. Pike, E. R. 1999, Determination of Size Distributions of Sub-Micron Particle Dispersions by Photon Correlation Spectroscopy. in Techniques in Pharmacology, eds G. Mestres and F. Nielloud, (Marcel Dekker, Basle) to appear.

    Google Scholar 

  3. Ross, D. A., Dhadwall, H. S. and Suh, K., 1994, SPIE Proceedings Orlando

    Google Scholar 

  4. McNally, B., Patin, P. and Pike, E. R., 1997, in Light Scattering and Photon Correlation Spectroscopy, NATO ASI Series, High Technology, Vol 40, E. R. Pike and J. B. Abbiss (eds), (Kluwer: Dordrecht) p117

    Google Scholar 

  5. Ramaseshan, S. (ed), 1988, Scientific papers of C. V. Raman III-Optics (Bangalore: Indian Academy of Sciences) pxi

    Google Scholar 

  6. Ramachandran, G. N., 1943, Proc. Indian Acad. Sci., A18, 190

    Google Scholar 

  7. Lord Rayleigh, 1880, Phil. Mag., 10

    Google Scholar 

  8. Raman, C. V. 1959, Lectures in Physical Optics, Part I, (Indian Academy of Sciences: Bangalore) p160

    Google Scholar 

  9. Gorelik, G., 1947, Dokl. Acad. Nauk, 58, 45

    Google Scholar 

  10. Forrester, A. T., Parkins, W. E. and Gerjuoy, E., 1947, Phys. Rev., 72, 728

    Google Scholar 

  11. Forrester, A. T., Gudmunsen, R. A. and Johnson, P. O., 1955, Phys. Rev., 99, 1691

    Google Scholar 

  12. Hanbury Brown, R. and Twiss, R. Q., 1956, Nature, 177, 27; 178, 1046, 1447

    Google Scholar 

  13. Cummins, H. Z., Knable, N. and Yeh, Y., 1963, Phys. Rev. Lett., 12, 150

    Google Scholar 

  14. Ford, N. C. and Benedek, G. B., 1965, Phy. Rev. Lett., 15, 649

    Google Scholar 

  15. Gammon, R. W., Shaumeyer, J. N., Briggs, M. E., Boukari, H. and Gent, D. A., 1997, in Light Scattering and Photon Correlation Spectroscopy, NATO ASI Series, High Technology, Vol 40, E. R. Pike and J. B. Abbiss (eds), (Kluwer: Dordrecht) p389

    Google Scholar 

  16. Dubin, S. B., Luncek, J. H. and Benedek, G. B., 1967, Proc. Natl. Acad. Sci. USA, 57, 1164

    Google Scholar 

  17. Pecora, R., 1964, J. Chem. Phys., 40, 1604

    Google Scholar 

  18. Jakeman, E., Oliver, C. J. and Pike, E. R., 1975, Advances in Physics, 24, 349

    Google Scholar 

  19. Siegert, A. J. F., 1943, MIT Radiation Laboratory Report, No 465

    Google Scholar 

  20. Pike, E. R., Gran, M. and Pailharey, E., 1997, App. Optics, 1997, 36, 7531

    Article  ADS  CAS  Google Scholar 

  21. Brown, R. G. W., Ridley, K. D. and Rarity, J. G., 1986, Applied Optics, 25, 4122

    Google Scholar 

  22. Brown, R. G. W., Jones, R., Rarity, J. G. and Ridley, K. D., 1987,Applied Optics, 26, 2383

    Google Scholar 

  23. Smart, A. E., 1997, in Light Scattering and Photon Correlation Spectroscopy, NATO ASI Series, High Technology, Vol 40, E. R. Pike and J. B. Abbiss (eds), (Kluwer: Dordrecht) p373

    Google Scholar 

  24. Pusey, P. N., 1973, in Industrial Polymers: Characterisation by Molecular Weight, J. H. S. Green and R. Dietz (eds), (Transcripta Books: London)

    Google Scholar 

  25. Koppel, D. E., 1972, J. Chem. Phys., 57, 4814

    Google Scholar 

  26. Pike, E. R., McWhirter, J. G., Bertero, M. and De Mol, C., 1984, Proc. IEE, 131, 660

    Google Scholar 

  27. Shannon, C. F. and Weaver, W., 1949, The Mathematical Theory of Communication, (University of Illinois Press: Chicago)

    Google Scholar 

  28. McWhirter, J. G. and Pike, E. R., 1978, J. Phys. A, 11, 1729

    Google Scholar 

  29. Ostrowsky, N., Sornette, D., Parker, P. and Pike, E. R., 1981, Opt. Acta, 28, 1059

    Google Scholar 

  30. Pike, E. R., and McNally, B. M., 1997, in Scientific Computing, F. T. Luk and R. J. Plemmons (eds), (Springer: Berlin), p101

    Google Scholar 

  31. de Villiers, G. D., 1996, An algorithm for reconstructing positive images from noisy data. Proceedings of 8th European Signal Processing Conference (EUSIPCO-96), LINT Trieste, 895–898.

    Google Scholar 

  32. Micchelli, C. A., Smith, P. W., Swetits, J. and Ward, J. D., 1985, Constrained Lp approximation. Constructive Approximation, 1, 93–102.

    Google Scholar 

  33. Gill, P. E., Hammarling, S. J., Murray, W., Saunders, M. A. and Wright, M. H., 1986, Users guide for LSSOL (Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University.

    Google Scholar 

  34. Rockafellar, R. T., 1970, Convex analysis, Princeton University Press.

    Google Scholar 

  35. Borwein, J. M. and Lewis, A. S., 1992, Mathematical Programming, 57,49

    Google Scholar 

  36. de Villiers, G. D., McNally, B. and Pike, E. R., 1998, Positive solutions to linear inverse problems, to be published in Inverse Problems

    Google Scholar 

  37. Borwein, J. M. and Lewis, A. S., 1991, Duality relationships for entropy-like minimization problems. SIAM J. Control and Optimization,29, 325–338.

    Google Scholar 

  38. Bazaraa, M. S., Sherali, H. D. and Shetty,& C. M., 1993, Nonlinear Programming-Theory and Algorithms, Second Edition, Wiley Interscience, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pike, E., Hester, G., McNally, B., de Villiers, G. (2000). Mathematical Methods for Data Inversion. In: Moreno, F., González, F. (eds) Light Scattering from Microstructures. Lecture Notes in Physics, vol 534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46614-2_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-46614-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66937-1

  • Online ISBN: 978-3-540-46614-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics