Skip to main content

Notes on Equivariant Localization

  • Conference paper
  • First Online:
Geometry and Quantum Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 543))

Abstract

We review the localization formula due to Berline-Vergne and Atiyah- Bott, with applications to the exact stationary phase phenomenon discovered by Duistermaat-Heckman. We explain the Weil model of equivariant cohomology and recall its relation to BRST. We show how to quantize the Weil model, and obtain new localization formulas which, in particular, apply to Hamiltonian spaces with group valued moment maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atiyah, M., Bott, R. (1984): The moment map and equivariant cohomology. Topology 23 no. 1, 1–28

    Article  MATH  MathSciNet  Google Scholar 

  2. Alekseev, A., Malkin, A., Meinrenken E. (1998): Lie group valued moment maps. J. Differential Geom. 48 no. 3, 445–495

    MATH  MathSciNet  Google Scholar 

  3. Alekseev, A., Meinrenken, E. (1999): The non-commutative Weil algebra. Preprint math.DG/990352, to be published in Inv. Math.

    Google Scholar 

  4. Alekseev, A., Meinrenken, E., Woodward, C. (1999): Duistermaat-Heckman distributions for group-valued moment maps. Preprint math.DG/9903087

    Google Scholar 

  5. Alekseev, A., Meinrenken, E., Woodward, C. (1999): Group-valued equivariant localization. Preprint math.DG/9905130

    Google Scholar 

  6. Berline, N., Vergne, M. (1983): Zéro d’un champ de vecteurs et classes caractéristiques équivariantes. Duke Math. J. 50, 539–549

    Article  MATH  MathSciNet  Google Scholar 

  7. Berline, N., Getzler, E., Vergne, M. (1992): Heat kernels and Dirac operators. Grundlehren der mathematischen Wissenschaften, vol. 298, Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  8. Blau, M., Thompson, G. (1995): Equivariant Kähler Geometry and Localization in G=G Model. Nucl. Phys. B439, 367–394

    Article  ADS  MathSciNet  Google Scholar 

  9. Cartan, H. (1950): La transgression dans un groupe de Lie et dans un fibré principal. In Colloque de topologie (espaces fibrés), Bruxelles, 73–81

    Google Scholar 

  10. Cartan, H. (1950): Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opŕe un groupe de Lie. In Colloque de topologie (espaces fibrès), Bruxelles

    Google Scholar 

  11. Cordes, S., Moore, G., Ramgoolam, S. (1995): Lectures on 2D Yang-Mills Theory, Equivariant Cohomology and Topological Field Theories. Nucl. Phys. Proc. Suppl. 41, 184–244

    MATH  MathSciNet  Google Scholar 

  12. Duistermaat, J.J., Heckman, G.J. (1982): One the variation in the cohomology of the symplectic form on the reduced phase space. Inv. Math. 69, 259–268

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Gerasimov, A. (1993): Localization in GWZW and Verlinde formula. Preprint hep-th/9305090

    Google Scholar 

  14. A., Morozov, A., Niemi, A., Palo, K. (1991): Supersymmetry and loopspace geometry. Phys. Lett. B 271 365–371

    ADS  MathSciNet  Google Scholar 

  15. Jeffrey, L., Kirwan, F. (1995): Localization for Nonabelian Group Actions. Topology 34, 291–327

    Article  MATH  MathSciNet  Google Scholar 

  16. Kalkman, J. (1993): A BRST model applied to symplectic geometry. Ph.D. thesis, Universiteit Utrecht.

    Google Scholar 

  17. Moore, G., Nekrasov, N., Shatashvili, S. (1997): Integrating over Higgsbranches. Preprint hep-th/9712241

    Google Scholar 

  18. Plamenevskaya, O. (1999): A Residue Formula for SU(2)-valued Moment Maps. Preprint math.DG/9906093

    Google Scholar 

  19. Witten, E. (1982): Supersymmetry and Morse theory. J. Differential Geom. 17, 661–692

    MATH  MathSciNet  Google Scholar 

  20. Witten, E. (1992): Two-dimensional gauge theory revisited. J. Geom. Phys. 9, 303–368

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alekseev, A. (2000). Notes on Equivariant Localization. In: Gausterer, H., Pittner, L., Grosse, H. (eds) Geometry and Quantum Physics. Lecture Notes in Physics, vol 543. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46552-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-46552-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67112-1

  • Online ISBN: 978-3-540-46552-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics