Advertisement

Languages of Dot-Depth 3/2

  • Christian Glaßer
  • Heinz Schmitz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1770)

Abstract

We prove an effective characterization of languages having dot-depth 3/2. Let B 3/2 denote this class, i.e., languages that can be written as finite unions of languages of the form u 0 L 1 u 1 L 2 u 2 ...L n u n, where u iA* and L i are languages of dot-depth one. Let F be a deterministic finite automaton accepting some language L. Resulting from a detailed study of the structure of B 3/2, we identify a pattern P (cf. Fig. 2) such that L belongs to B 3/2 if and only if F does not have pattern P in its transition graph. This yields an NL-algorithm for the membership problem for B 3/2.

Due to known relations between the dot-depth hierarchy and symbolic logic, the decidability of the class of languages definable by Σ 2-formulas of the logic FO[<, min, max, S, P] follows. We give an algebraic interpretation of our result.

Keywords

Regular Language Transition Graph Membership Problem Deterministic Finite Automaton Algebraic Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Arf91]
    M. Arfi. Opérations polynomiales et hiérarchies de concaténation. Theoretical Computer Science, 91:71–84, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [BK78]
    J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is infinite. Journal of Computer and System Sciences, 16:37–55, 1978.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [Brz76]
    J. A. Brzozowski. Hierarchies of aperiodic languages. RAIRO Inform. Theor., 10:33–49, 1976.MathSciNetGoogle Scholar
  4. [CB71]
    R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of Computer and System Sciences, 5:1–16, 1971.zbMATHMathSciNetGoogle Scholar
  5. [CK96]
    C. Choffrut and J. Karhumäki. Combinatorics of words. In G. Rozenberg and A. Salomaa, editors, Handbook of formal languages, volume I, pages 329–438. Springer, 1996.Google Scholar
  6. [Gla98]
    C. Glaßer. A normalform for classes of concatenation hierarchies. Technical Report 216, Inst. für Informatik, Univ. Würzburg, 1998.Google Scholar
  7. [GS99]
    C. Glaßer and H. Schmitz. Languages of dot-depth 3/2. Technical Report 243, Inst. für Informatik, Univ. Würzburg, 1999.Google Scholar
  8. [Has83]
    K. Hashiguchi. Representation theorems on regular languages. Journal of Computer and System Sciences, 27:101–115, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [Hig52]
    G. Higman. Ordering by divisibility in abstract algebras. In Proc. London Math. Soc., volume 3, pages 326–336, 1952.CrossRefMathSciNetGoogle Scholar
  10. [Kna83]
    R. Knast. A semigroup characterization of dot-depth one languages. RAIRO Inform. Théor., 17:321–330, 1983.zbMATHMathSciNetGoogle Scholar
  11. [MP71]
    R. McNaughton and S. Papert. Counterfree Automata. MIT Press, Cambridge, 1971.Google Scholar
  12. [Pin95]
    J. E. Pin. A variety theorem without complementation. Russian Math., 39:74–83, 1995.zbMATHMathSciNetGoogle Scholar
  13. [Pin96]
    J. E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors, Handbook of formal languages, volume I, pages 679–746. Springer, 1996.Google Scholar
  14. [PP86]
    D. Perrin and J. E. Pin. First-order logic and star-free sets. Journal of Computer and System Sciences, 32:393–406, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [PW97]
    J. E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory. of computing systems, 30:383–422, 1997.zbMATHMathSciNetGoogle Scholar
  16. [Sim72]
    I. Simon. Hierarchies of events with dot-depth one. PhD thesis, University of Waterloo, 1972.Google Scholar
  17. [Sim90]
    I. Simon. Factorization forests of finite height. Theoretical Computer Science, 72:65–94, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [SS83]
    J. Sakarovitch and I. Simon. Subwords. In M. Lothaire, editor, Combinatorics on Words, Encyclopedia of mathematics and its applications, pages 105–142. Addison-Wesley, 1983.Google Scholar
  19. [Ste85]
    J. Stern. Characterizations of some classes of regular events. Theoretical Computer Science, 35:17–42, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [Str81]
    H. Straubing. A generalization of the Schützenberger product of finite monoids. Theoretical Computer Science, 13:137–150, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [Str85]
    H. Straubing. Finite semigroups varieties of the form V * D. J. Pure Appl. Algebra, 36:53–94, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [Str88]
    H. Straubing. Semigroups and languages of dot-depth two. Theoretical Computer Science, 58:361–378, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [Thé81]
    D. Thérien. Classification of finite monoids: the language approach. Theoretical Computer Science, 14:195–208, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [Tho82]
    W. Thomas. Classifying regular events in symbolic logic. Journal of Computer and System Sciences, 25:360–376, 1982.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Christian Glaßer
    • 1
  • Heinz Schmitz
    • 1
  1. 1.Theoretische InformatikUniversität WürzburgWürzburgGermany

Personalised recommendations