Skip to main content

Optimal Proof Systems and Sparse Sets

  • Conference paper
  • First Online:
STACS 2000 (STACS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1770))

Included in the following conference series:

Abstract

We exhibit a relativized world where NPSPARSE has no complete sets. This gives the first relativized world where no optimal proof systems exist.

We also examine under what reductions NPSPARSE can have complete sets. We show a close connection between these issues and reductions from sparse to tally sets. We also consider the question as to whether the NPSPARSE languages have a computable enumeration.

Several proofs have been omitted to conserve space. A full version can be found at http://www.neci.nj.nec.com/homepages/fortnow/papers.

Supported in part by NSF grants CCR-9501794 and CCR-9996310.

Supported in part by NSF grant CCR-9732922.

Supported in part by NSF grant CCR-9732922.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Buhrman, E. Hemaspaandra, and L. Longpré. SPARSE reduces conjunctively to TALLY. SIAM Journal on Computing, 24(3):673–681, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Book and K. Ko. On sets truth-table reducible to sparse sets. SIAM Journal on Computing, 17(5):903–919, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Cook and R. Reckhow. The relative effciency of propositional proof systems. Journal of Symbolic Logic, 44:36–50, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Fortnow. The role of relativization in complexity theory. Bulletin of the European Association for Theoretical Computer Science, 52:229–244, February 1994.

    MATH  Google Scholar 

  5. J. Hartmanis and L. Hemachandra. Complexity classes without machines: On complete languages for UP. Theoretical Computer Science, 34:17–32, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Hemaspaandra, S. Jain, and N. Vereshchagin. Banishing robust turing completeness. International Journal of Foundations of Computer Science, 4(3):245–265, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Hartmanis and Y. Yesha. Computation times of NP sets of different densities. Theoretical Computer Science, 34(1–2):17–32, November 1984.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Ko. Distinguishing conjunctive and disjunctive reducibilities by sparse sets. Information and Computation, 81(1):62–87, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Krajíček and P. Pudlák. Propositional proof systems, the consistency of first order theories and the complexity of computations. Journal of Symbolic Logic, 54:1063–1079, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Klivans and D. van Melkebeek. Graph nonisomorhism has subexponential size proofs unless the polynomial-time hierarchy collapses. In Proceedings of the 31st ACM Symposium on the Theory of Computing, pages 659–667. ACM, New York, 1999.

    Google Scholar 

  11. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Graduate Texts in Computer Science. Springer, New York, second edition, 1997.

    MATH  Google Scholar 

  12. J. Messner and J. Torán. Optimal proof systems for propositional logic and complete sets. In Proceedings of the 15th Symposium on Theoretical Aspects of Computer Science, volume 1373 of Lecture Notes in Computer Science, pages 477–487. Springer, 1998.

    Google Scholar 

  13. S. Saluja. Relativized limitations of left set technique and closure classes of sparse sets. In Proceedings of the 8th IEEE Structure in Complexity Theory Conference, pages 215–223. IEEE, New York, 1993.

    Google Scholar 

  14. U. Schöning. On random reductions from sparse sets to tally sets. Information Processing Letters, 46(5):239–241, July 1993.

    Article  MATH  Google Scholar 

  15. J. Seiferas, M. Fischer, and A. Meyer. Separating nondeterministic time complexity classes. Journal of the ACM, 25(1):146–167, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Žàk. A Turing machine time hierarchy. Theoretical Computer Science, 26(3):327–333, 1983.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buhrman, H., Fenner, S., Fortnow, L., van Melkebeek, D. (2000). Optimal Proof Systems and Sparse Sets. In: Reichel, H., Tison, S. (eds) STACS 2000. STACS 2000. Lecture Notes in Computer Science, vol 1770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46541-3_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-46541-3_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67141-1

  • Online ISBN: 978-3-540-46541-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics