Codes and Graphs

  • M. Amin Shokrollahi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1770)


In this paper, I will give a brief introduction to the theory of low-density parity-check codes, and their decoding. I will emphasize the case of correcting erasures as it is still the best understood and most accessible case. At the end of the paper, I will also describe more recent developments.


Degree Distribution Linear Code LDPC Code Turbo Code Check Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Alon and M. Luby. A linear time erasure-resilient code with nearly optimal recovery. IEEE Trans. Inform. Theory, 42:1732–1736, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. J. ACM, 45:70–122, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    E.R. Berlekamp, R.J. McEliece, and H.C.A. vanTilborg. On the inherent intractability of certain coding problems. IEEE Trans. Inform. Theory, 24:384–386, 1978.zbMATHCrossRefGoogle Scholar
  4. 4.
    C. Berroux, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-correcting coding and decoding. In Proceedings of ICC’93, pages 1064–1070, 1993.Google Scholar
  5. 5.
    P. Elias. Coding for two noisy channels. In Information Theory, Third London Symposium, pages 61–76, 1955.Google Scholar
  6. 6.
    R. G. Gallager. Low Density Parity-Check Codes. MIT Press, Cambridge, MA, 1963.Google Scholar
  7. 7.
    M. Luby, M. Mitzenmacher, and M.A. Shokrollahi. Analysis of random processes via and-or tree evaluation. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 364–373, 1998.Google Scholar
  8. 8.
    M. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D. Spielman. Analysis of low density codes and improved designs using irregular graphs. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 249–258, 1998.Google Scholar
  9. 9.
    M. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D. Spielman. Improved low-density parity-check codes using irregular graphs and belief propagation. In Proceedings 1998 IEEE International Symposium on Information Theory, page 117, 1998.Google Scholar
  10. 10.
    M. Luby, M. Mitzenmacher, M.A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-resilient codes. In Proceedings of the 29th annual ACM Symposium on Theory of Computing, pages 150–159, 1997.Google Scholar
  11. 11.
    D.J.C. MacKay. Good error-correcting codes based on very sparse matrices. IEEE Trans. Inform. Theory, 45:399–431, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    G. A. Margulis. Explicit constructions of graphs without short cycles and low density codes. Combinatorica, 2:71–78, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    T. Richardson, M.A. Shokrollahi, and R. Urbanke. Design of provably good low-density parity check codes. IEEE Trans. Inform. Theory (submitted), 1999.Google Scholar
  14. 14.
    T. Richardson and R. Urbanke. The capacity of low-density parity check codes under message-passing decoding. IEEE Trans. Inform. Theory (submitted), 1998.Google Scholar
  15. 15.
    C. E. Shannon. A mathematical theory of communication. Bell System Tech. J., 27:379–423, 623–656, 1948.MathSciNetGoogle Scholar
  16. 16.
    M.A. Shokrollahi. New sequences of linear time erasure codes approaching the channel capacity. To appear in the Proceedings of AAECC’13, 1999.Google Scholar
  17. 17.
    M. Sipser and D. Spielman. Expander codes. IEEE Trans. Inform. Theory, 42:1710–1722, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    D. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Trans. Inform. Theory, 42:1723–1731, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    M. R. Tanner. A recursive approach to low complexity codes. IEEE Trans. Inform. Theory, 27:533–547, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    V. V. Zyablov. An estimate of the complexity of constructing binary linear cascade codes. Probl. Inform. Transm., 7:3–10, 1971.Google Scholar
  21. 21.
    V. V. Zyablov and M. S. Pinsker. Estimation of error-correction complexity of Gallager low-density codes. Probl. Inform. Transm., 11:18–28, 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • M. Amin Shokrollahi
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations