Advertisement

Hybrid Systems Verification by Location Elimination

  • Andreas Nonnengart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1790)

Abstract

In this paper we propose a verification method for hybrid systems that is based on a successive elimination of the various system locations involved. Briefly, with each such elimination we compute a weakest precondition (strongest postcondition) on the predecessor (successor) locations such that the property to be proved cannot be violated. Experiments show that this approach is particularly interesting in cases where a standard reachability analysis would require to travel often through some of the given system locations.

Keywords

Model Check Hybrid System Predicate Symbol Reachable State Discrete Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ACD90]
    R. Alur, C. Courcoubetis, and D. L. Dill. Model checking for real-time systems. In Proceedings of the 5th Annual Symposium on Logic in Computer Science, pages 414–425, 1990.Google Scholar
  2. [ACH+95]_R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifaksi, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [ACHH93]
    R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid Systems, pages 209–229. Springer Verlag, Lecture Notes in Computer Science, vol. 736, 1993.Google Scholar
  4. [AD94]
    R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [AH92]
    R. Alur and T. A. Henzinger. Logics and models of real-time: A survey. In J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real Time: Theory in Practice, pages 74–106. Springer Verlag, New York, LNCS 600, 1992.CrossRefGoogle Scholar
  6. [AHH96]
    Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic symbolic verification of embedded systems. IEEE Transactions on Software Engineering, 22(3):181–201, 1996.CrossRefGoogle Scholar
  7. [AHS96]
    R. Alur, T. A. Henzinger, and E. Sontag, editors. Hybrid Systems III. Lecture Notes in Computer Science, Springer Verlag, 1996.Google Scholar
  8. [ANKS95]
    P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors. Hybrid Systems II. Lecture Notes in Computer Science, vol. 999, Springer Verlag, 1995.zbMATHGoogle Scholar
  9. [GNRR93]
    R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors. Hybrid Systems. Springer Verlag, Lecture Notes in Computer Science, vol. 736, 1993.Google Scholar
  10. [Hen96]
    T. A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th LICS, pages 278–292. IEEE Comp. Soc. Press, 1996.Google Scholar
  11. [HNSY92]
    T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems. In Proceedings of the 7th Annual Symposium on Logic in Computer Science, pages 394–406. IEEE Computer Society Press, New York, 1992.Google Scholar
  12. [Non99]
    Andreas Nonnengart. A deductive model checking approach for hybrid systems. Technical Report MPI-I-1999-2-006, Max-Planck-Institute for Computer Science, Saarbrücken, Germany, November 1999. Available via http://www.mpi-sb.mpg.de/.Google Scholar
  13. [NOS99]
    Andreas Nonnengart, Hans Jürgen Ohlbach, and Andrzej Szałas. Elimination of predicate quantifiers. In Hans Jürgen Ohlbach and Uwe Reyle, editors, Logic, Language and Reasoning — Essays in Honour of Dov Gabbay. Kluwer, Dordrecht, Netherlands, 1999. ISBN: 0-7923-5687-X.Google Scholar
  14. [NS95]
    Andreas Nonnengart and Andrzej Szałas. A fixpoint approach to second-order quantifier elimination with applications to correspondence theory. Technical Report MPI-I-95-2-007, Max-Planck-Institute for Computer Science, Saarbrücken, Germany, March 1995. Available via: http://www.mpisb.mpg.de/.Google Scholar
  15. [NS99]
    Andreas Nonnengart and Andrzej Szalas. A fixpoint approach to second-order quantifier elimination with applications to correspondence theory. in: [Orł99], 1999.Google Scholar
  16. [Orł99]
    Ewa Orłowska, editor. Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa, volume 24 of Studies in Fuzziness and Soft Computing. Physica-Verlag, c/o Springer Verlag, 1999. ISBN: 3-7908-1164-5.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Andreas Nonnengart
    • 1
  1. 1.Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI GmbH)SaarbrückenGermany

Personalised recommendations