Advertisement

Computing Optimal Operation Schemes for Chemical Plants in Multi-batch Mode

  • Peter Niebert
  • Sergio Yovine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1790)

Abstract

We propose a computer-aided methodology to automatically generate time optimal production schemes for chemical batch plants operating in multi-batch mode. Our approach is based on the following principles: (1) the plant is modeled at the level of process operations whose behavior is specified by timed automata, (2) the optimal production schemes are generated using algorithms for reachability analysis of timed automata implemented in OpenKronos, (3) the output of the verification tool is post-processed to derive high-level control code. We apply our methodology to the batch plant at the University of Dortmund. The automatically computed operation schemes turned out to be more efficient than the previously used handwritten ones.

Keywords

Partial Order Process Operation Control Architecture Operation Scheme Hasse Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–235, April 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    K. Altisen, G. Goessler, A. Pnueli, J. Sifakis, S. Tripakis, and S.Yovine. A framework for scheduler synthesis. In Proc. RTSS’99, Phoenix, AZ, USA, December 1999. IEEE Computer Society Press.Google Scholar
  4. 4.
    E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata. In F. Vaandrager and J. van Schuppen, editors, Hybrid Systems: Computation and Control, volume 1569 of LNCS, pages 19–30. Springer, Mars 1999.CrossRefGoogle Scholar
  5. 5.
    M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. KRONOS: a model-checking tool for real-time systems. In CAV, LNCS, 1998.Google Scholar
  6. 6.
    R. Huuck. Verifying Timing Aspects of VHS Case Study 1. Tech. Report. University of Kiel, May 1999.Google Scholar
  7. 7.
    ISA S88.01 Batch Control Part I, Models and Terminology. ANSI/ISA, 1995.Google Scholar
  8. 8.
    K. Kristoffersen, K. Larsen, P. Pettersson, and C. Weise. Experimental Batch Plant-VHS Case Study 1 using Timed Automata and UPPAAL. Tech. Report, BRICS, Denmark, May 1999.Google Scholar
  9. 9.
    K.L. McMillan. Symbolic Model-Checking: an Approach to the State-Explosion problem, Kluwer, 1993.Google Scholar
  10. 10.
    A. Pnueli E. Asarin, O. Maler and J. Sifakis. Controller synthesis for timed automata. In Proc. System Structure and Control, pages 469–474. IFAC, Elsevier, July 1998.Google Scholar
  11. 11.
    S. Kowalewski. Description of VHS case study 1 “Experimental Batch Plant”. Draft. University of Dortmund, Germany, July 1998.Google Scholar
  12. 12.
    M. Säflund and G. Stalmarck. Modeling and verifying systems and software in propositional logic. In SAFECOMP’90, pages 31–36, 1990.Google Scholar
  13. 13.
    European Project ESPRIT-LTR VHS. http://www-verimag.imag.fr/VHS.
  14. 14.
    W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage of a given language. SIAM J. Control and Optimization, 25(3):637–659, May 1987.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Peter Niebert
    • 1
  • Sergio Yovine
    • 1
  1. 1.VERIMAGGièresFrance

Personalised recommendations