Advertisement

Nonlinear Stabilization by Hybrid Quantized Feedback

  • Daniel Liberzon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1790)

Abstract

This paper is concerned with global asymptotic stabilization of continuous-time control systems by means of quantized feedback. For linear systems, a hybrid control strategy for dealing with this problem was recently proposed by Roger Brockett and the author. The solution is based on making discrete on-line adjustments to the sensitivity of the quantizer. In the present paper we extend this method to a class of nonlinear systems.

Keywords

Asymptotic Stability Nonlinear Stabilization Global Asymptotic Stability Local Asymptotic Stability Control Lyapunov Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Brockett, Hybrid models for motion control systems, in Essays on Control: Perspectives in the Theory and Its Applications (H. Trentelman and J. C. Willems, eds.), Birkhäuser, Boston, 1993, pp. 29–53.Google Scholar
  2. 2.
    R. W. Brockett, D. Liberzon, Quantized feedback stabilization of linear systems, IEEE Trans. Automat. Control, Jul 2000, to appear.Google Scholar
  3. 3.
    J.-H. Chou, S.-H. Chen, I.-R. Horng, Robust stability bound on linear time-varying uncertainties for linear digital control systems under finite wordlength effects, JSME Internat. J. Series C, vol. 39, 1996, pp. 767–771.Google Scholar
  4. 4.
    F. H. Clarke, Yu. S. Ledyaev, E. D. Sontag, A. I. Subbotin, Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control, vol. 42, 1997, pp. 1394–1407.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. F. Delchamps, Stabilizing a linear system with quantized state feedback, IEEE Trans. Automat. Control, vol. 35, 1990, pp. 916–924.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    N. C. S. Fah, Input-to-state stability with respect to measurement disturbances for one-dimensional systems, ESAIM J. Control, Optimization and Calculus of Variations, vol. 4, 1999, pp. 99–122.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    X. Feng, K. A. Loparo, Active probing for information in control systems with quantized state measurements: a minimum entropy approach, IEEE Trans. Automat. Control, vol. 42, 1997, pp. 216–238.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer, Dordrecht, 1988.Google Scholar
  9. 9.
    R. Freeman, Global internal stabilizability does not imply global external stabilizability for small sensor disturbances, IEEE Trans. Automat. Control, vol. 40, 1995, pp. 2119–2122.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    R. Freeman, P. V. Kokotovic, Global robustness of nonlinear systems to state measurement disturbances, in Proc. 32nd Conf. on Decision and Control, 1993, pp. 1507–1512.Google Scholar
  11. 11.
    B. Hu, Z. Feng, A. N. Michel, Quantized sampled-data feedback stabilization for linear and nonlinear control systems, in Proc. 38th Conf. on Decision and Control, 1999, pp. 4392–4397.Google Scholar
  12. 12.
    Z.-P. Jiang, I. Mareels, D. Hill, Robust control of uncertain nonlinear systems via measurement feedback, IEEE Trans. Automat. Control, vol. 44, 1999, pp. 807–812.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Yu. S. Ledyaev, E. D. Sontag, A Lyapunov characterization of robust stabilization, J. Nonlinear Analysis, vol. 37, 1999, pp. 813–840.CrossRefMathSciNetGoogle Scholar
  14. 14.
    J. Raisch, Control of continuous plants by symbolic output feedback, in Hybrid Systems II (P. Antsaklis et al., eds.), Springer-Verlag, Berlin, 1995, pp. 370–390.Google Scholar
  15. 15.
    E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control, vol. 34, 1989, pp. 435–443.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    E. D. Sontag, Input/output and state-space stability, in New Trends in Systems Theory (G. Conte et al., eds.), Birkhäuser, Boston, 1991, pp. 684–691.Google Scholar
  17. 17.
    E. D. Sontag, Feedback insensitivity to small measurement errors, in Proc. 38th Conf. on Decision and Control, 1999, pp. 2661–2666.Google Scholar
  18. 18.
    E. D. Sontag, Y. Wang, On characterizations of the input-to-state stability property, Systems Control Lett., vol. 24, 1995, pp. 351–359.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    E. D. Sontag, Y. Wang, New characterizations of input to state stability, IEEE Trans. Automat. Control, vol. 41, 1996, pp. 1283–1294.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    J. Sur, B. E. Paden, State observer for linear time-invariant systems with quantized output, ASME J. Dynamic Systems, Measurement, and Control, vol. 120, 1998, pp. 423–426.CrossRefGoogle Scholar
  21. 21.
    W. S. Wong, R. W. Brockett, Systems with finite communication bandwidth constraints I: State estimation problems, IEEE Trans. Automat. Control, vol. 42, 1997, pp. 1294–1299.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    W. S. Wong, R. W. Brockett, Systems with finite communication bandwidth constraints II: Stabilization with limited information feedback, IEEE Trans. Automat. Control, vol. 44, 1999, pp. 1049–1053.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Daniel Liberzon
    • 1
  1. 1.Dept. of Elect. Eng.Yale UniversityNew HavenUSA

Personalised recommendations