Advertisement

A Hybrid Feedback Regulator Approach to Control an Automotive Suspension System

  • Xenofon D. Koutsoukos
  • Panos J. Antsaklis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1790)

Abstract

In this paper, we demonstrate a novel hybrid control synthesis approach using an automotive suspension system. Discrete abstractions are used to approximate the continuous dynamics and emphasis is placed on the nondeterministic nature of the abstracting models. The regulator problem for hybrid systems is formulated for safety specifications and algorithms for control design are presented.

Keywords

Hybrid System Tolerance Interval Hybrid Dynamical System State Transition Function Reachability Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Antsaklis, J. Stiver, and M. Lemmon. Hybrid system modeling and autonomous control systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, eds., Hybrid Systems, Vol. 736, LNCS, 366–392. Springer-Verlag, 1993.Google Scholar
  2. 2.
    A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and constraints. Automatica, 35(3):407–427, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Bemporad and M. Morari. Verification of hybrid systems via mathematical programming. In HSCC 99: Hybrid Systems—Computation and Control, Vol. 1569, LNCS. Springer-Verlag, 1999.CrossRefGoogle Scholar
  4. 4.
    R. Fehnker. Automotive control revised-linear inequalities as approximations of reachable sets. In T. Henzinger and S. Sastry, eds., HSCC 98: Hybrid Systems—Computation and Control, Vol. 1386, LNCS, 110–125. Springer-Verlag, 1998.Google Scholar
  5. 5.
    M. Johansson and A. Rantzer. Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Transactions on Automatic Control, 43(1):31–45, 1998.CrossRefMathSciNetGoogle Scholar
  6. 6.
    X. Koutsoukos and P. Antsaklis. Design of hybrid system regulators. In Proceedings of the 38th IEEE Conference on Decision and Control, 3990–3995, Phoenix, AZ, Dec. 1999.Google Scholar
  7. 7.
    X. Koutsoukos and P. Antsaklis. Hybrid control of a robotic manufacturing system. In Proceedings of the 7th IEEE Mediterranean Confereence on Control and Automation, 144–159, Haifa, Israel, June 1999.Google Scholar
  8. 8.
    G. Lafferriere, G. Pappas, and S. Sastry. Reachability analysis of hybrid systems using bisimulations. In Proceedings of the 37th IEEE Conference on Decision and Control, 1623–1628, Tampa, FL, 1998.Google Scholar
  9. 9.
    J. Raisch and S. O’Young. Discrete approximation and supervisory control of continuous systems. IEEE Transactions on Automatic Control, 43(4):568–573, 1998.CrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Sain. Introduction to Algebraic System Theory. Academic Press, 1981.Google Scholar
  11. 11.
    E. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Transactions on Automatic Control, 26(2):346–358, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    E. Sontag. Remarks on piecewise-linear algebra. Pacific Journal of Mathematics, 92(1):1830–210, 1982.MathSciNetGoogle Scholar
  13. 13.
    E. Sontag. Interconnected automata and linear systems: A theoretical framework in discrete-time. In R. Alur, T. Henzinger, and E. Sontag, eds., Hybrid Systems III, Verification and Control, Vol. 1066, LNCS, 436–448. Springer-Verlag, 1996.Google Scholar
  14. 14.
    T. Stauner, O. Muller, and M. Fuchs. Using HYTECH to verify an automotive control system. In O. Maler, ed., Hybrid and Real-Time Systems, Vol. 1201, LNCS, 139–153. Springer-Verlag, 1997.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Xenofon D. Koutsoukos
    • 1
  • Panos J. Antsaklis
    • 1
  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre Dame

Personalised recommendations