Building Cyclic Elliptic Curves Modulo Large Primes

  • François Morain
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 547)


Elliptic curves play an important rôle in many areas of modern cryptology such as integer factorization and primality proving. Moreover, they can be used in cryptosystems based on discrete logarithms for building one-way permutations. For the latter purpose, it is required to have cyclic elliptic curves over finite fields. The aim of this note is to explain how to construct such curves over a finite field of large prime cardinality, using the ECPP primality proving test of Atkin and Morain.


Elliptic Curve Finite Field Elliptic Curf Discrete Logarithm Elliptic Curve Cryptosystems 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    L. M. Adleman, R. L. Rivest, and A. Shamir. A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM 21,2 (1978), 120–126.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. O. L. Atkin. Manuscript. Lecture Notes of a conference, Boulder (Colorado), August 1986.Google Scholar
  3. [3]
    A. O. L. Atkin. The number of points on an elliptic curve modulo a prime. Preprint, january 1988.Google Scholar
  4. [4]
    A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Research Report 1256, INRIA, Juin 1990. To appear in Math. Comp.Google Scholar
  5. [5]
    T. Beth and F. Schaefer. Non supersingular elliptic curves for public key cryptosystems. In Advances in Cryptology — EUROCRYPT’ 91 (1992), D. Davies, Ed., Springer-Verlag. Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques, Brighton, United Kingdom, April 8–11, 1991.Google Scholar
  6. [6]
    J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr.Factorizations of bn ± 1, b = 2,3,5,6,7,10,11,12 up to high powers, 2 ed. No. 22 in Contemporary Mathematics. AMS, 1988.Google Scholar
  7. [7]
    J. W. S. Cassels. Diophantine equations with special reference to elliptic curves. J. London Math. Soc. 41 (1966), 193–291.CrossRefMathSciNetGoogle Scholar
  8. [8]
    D. V. Chudnovsky and G. V. Chudnovsky. Sequences of numbers generated by addition in formal groups and new primality and factorization tests. Research report RC 11262, IBM, Yorktown Heights, 1985.Google Scholar
  9. [9]
    D. Coppersmith, A. M. Odlyzko, and R. Schroeppel. Discrete logarithms in GF(p). Algorithmica 1 (1986), 1–15.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    D. A. Cox. Primes of the form x2 + ny2. John Wiley & Sons, 1989.Google Scholar
  11. [11]
    M. Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hamburg 14 (1941), 197–272.CrossRefMathSciNetGoogle Scholar
  12. [12]
    W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. on Information Theory IT-22-6 (nov 1976).Google Scholar
  13. [13]
    N. Elkies. Computing the number of points on an elliptic curve modulo p. Email to Morain, 1990.Google Scholar
  14. [14]
    S. Goldwasser and J. Kilian. Almost all primes can be quickly certified. In Proc. 18th STOC (Berkeley, May 28–30 1986), pp. 316–329.Google Scholar
  15. [15]
    B. S. Kaliski, Jr. One-way permutations on elliptic curves. To appear in Journal of Cryptology, 1991.Google Scholar
  16. [16]
    N. Koblitz. Elliptic curve cryptosystems. Math. Comp. 48,177 (January 1987), 203–209.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    A. K. Lenstra and H. W. Lenstra, Jr. Algorithms in number theory. In Handbook of Theoretical Computer Science, J. van Leeuwen, Ed., vol. A: Algorithms and Complexity. North Holland, 1990, ch. 12, pp. 674–715.Google Scholar
  18. [18]
    H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Math. 126 (1987), 649–673.CrossRefMathSciNetGoogle Scholar
  19. [19]
    A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curves logarithms to logarithms in a finite field. Tech. rep., University of Waterloo, 1990. Preliminary version.Google Scholar
  20. [20]
    A. Menezes and S. A. Vanstone. The implementation of elliptic curve cryptosystems. In Advances in Cryptology (1990), J. Seberry and J. Pieprzyk, Eds., no. 453 in Lect. Notes in Computer Science, Springer-Verlag, pp. 2–13. Proceedings Auscrypt’ 90, Sysdney (Australia), January 1990.Google Scholar
  21. [21]
    V. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology (1987), A. M. Odlyzko, Ed., vol. 263 of Lect. Notes in Computer Science, Springer-Verlag, pp. 417–426. Proceedings Crypto’ 86, Santa Barbara (USA), August11–15, 1986.Google Scholar
  22. [22]
    F. Morain. Courbes elliptiques et tests de primalité. PhD thesis, Université Claude Bernard-Lyon I, Septembre 1990.Google Scholar
  23. [23]
    R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp. 44 (1985), 483–494.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    C. L. Siegel. Über die Classenzahl quadratischer Zahlkörper. Acta Arithmetica 1 (1935), 83–86.zbMATHGoogle Scholar
  25. [25]
    J. H. Silverman. The arithmetic of elliptic curves, vol. 106 of Graduate Texts in Mathematics. Springer, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • François Morain
    • 1
  1. 1.INRIALe Chesnay CedexFrance

Personalised recommendations