Genomic Data Explosion — The Challenge for Bioinformatics?

  • Änne Glass
  • Thomas Karopka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2394)


A dramatic increase in the amount of genomic expression data with knowledge in to mine for getting a principal understanding of “what is a considered disease at the genomic level” is available today. We give a short overview about common processing of micro array expression data. Furthermore we introduce a complex bioinformatic approach combining properly several analyzing methods to mine gene expression data and biomedical literature. Gene patterns and gene relation information as results from data and text mining is to be considered as integral part for modeling genetic networks. We apply methods of case-based-reasoning for generating a similarity tree consisting of genetic networks. These networks are efficient facilities to understand the dynamic of pathogenic processes and to answer a question like “what is a disease x in the genomic sense”?


Experimental Autoimmune Encephalomyelitis Genetic Network Biomedical Literature Laboratory Information Management System Adaptive Resonance Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alter, O., Brown, P.O., Botstein, D.:Singular value decomposition for genome-wide expression data processing and modeling. PNAS 97, Vol. 18 (2000) 10101–10106CrossRefGoogle Scholar
  2. 2.
    Bassett, D.E.J.R., Eisen, M.B., Boguski, M.S.: Gene expression informatics-it’s all in your mine. Nature Genetics Supplement 21 (1999) 51–55CrossRefGoogle Scholar
  3. 3.
    Berry, M.J.A., Linoff, G.: Mining techniques for marketing, sales und customer support. John Wiley & Sons, New York (1997)Google Scholar
  4. 4.
    Eisen, M.B., Spellmann, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. PNAS 95, Vol. 25 (1998) 14863–14868CrossRefGoogle Scholar
  5. 5.
    Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P., Trent, J.M.: Expression profiling using cDNA microarrays. Nature 21 (1999) 10–14Google Scholar
  6. 6.
    Perner, P.: Classification of Hep-2 Cells using Fluorescent Image Analysis and Data Mining. In: Crespo, J., Maojo, V., Martin, F. (eds.): Medical Data Analysis. (2001) 219–224Google Scholar
  7. 7.
    Chen, Y., Dougherty, E.R., Bittner, M.L.: Ratio-based decisions and the quantitative analysis of cDNA microarray images. J Biomed. Optics 2 (1997) 364–374CrossRefGoogle Scholar
  8. 8.
    Oliver, S.: Guilt-by-association goes global. Nature 403 (2000) 601–603CrossRefGoogle Scholar
  9. 9.
    Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P., Holstege, F.C., Kim, I.F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J., Vingron, M.: Minimum information about microarray experiment (MIAME) towards standards for microarray data. Nature Genetics 29 Vol. 4 (2001) 365–371CrossRefGoogle Scholar
  10. 10.
    Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270 (1995) 467–470CrossRefGoogle Scholar
  11. 11.
    Velculescu, V.E., Zhang, L., Vogelstein, B., Kinzler, K.W.: Serial analysis of gene expression. Science 70 Vol. 5235 (1995) 484–487CrossRefGoogle Scholar
  12. 12.
    Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H., Brown, E.L.: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14 (1996) 1675–1680CrossRefGoogle Scholar
  13. 13.
    Ibrahim, S.M., Mix, E., Bottcher, T., Koczan, D., Gold, R., Rolfs, A., Thiesen, H.J.: Gene expression profiling of the nervous system in murine experimental autoimmune encephalomyelitis. Brain 124 (2001) 1927–1938CrossRefGoogle Scholar
  14. 14.
    Everitt, B.S.: The Cambridge Dictionary of Statistics in the Medical Sciences. Cambridge University Press. (1995)Google Scholar
  15. 15.
    Khan, J., Simon, R., Bittner, M., Chen, Y., Leighton, S.B., Pohida, T., Smith, P.D., Jiang, Y., Gooden, G.C., Trent, J.M., Meltzer, P.S.: Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res. 58 (1998) 5009–5013Google Scholar
  16. 16.
    Debouk, C. and Goodfellow, P.: DNA microarrays in drug discovery and development. Nature Genet. 21 (1999) 48–50CrossRefGoogle Scholar
  17. 17.
    Glass, Ä.: A bioinformatic approach for generating genetic networks. Biosystems and Medical Technology 2 (2000) 52Google Scholar
  18. 18.
    Smaglik, P.: For my next trick. Nature 407 (2000) 828–829CrossRefGoogle Scholar
  19. 19.
    Somogyi, R.: Making sense of gene-expression data. Pharmainformatics (1999) 17–24Google Scholar
  20. 20.
    Carpenter, G. A., Grossberg, S.: A massively parallel architecture for a self organizing neural pattern recognition machine. Computer Vision, Graphics, and Image processing 37 (1987)54–115CrossRefGoogle Scholar
  21. 21.
    Michel, E., Zernikow, B., Wichert, S.A.: Use of an artificial neural network (ANN) for classifying care needed, using incomplete input data. Med. Inform. 25 Vol. 2 (2000) 147–158CrossRefGoogle Scholar
  22. 22.
    Kneller, D.G., Cohen, F.E., Langridge, R.: Improvements in protein secundary structure prediction by an enhanced neural network. J Mol Biol 214 (1990) 171–182CrossRefGoogle Scholar
  23. 23.
    Wessel, M.D., Jurs, P.C., Tolan, J.W., Muskal, S.M.: Prediction of human intestinal absorption of drug compounds from molecular structure. J. Chem. Inf. Comput. Sci 38 Vol. 4 (1998) 726–735CrossRefGoogle Scholar
  24. 24.
    Pearson, H.: Biology’s name game. Nature 411 (2001) 631–632CrossRefGoogle Scholar
  25. 25.
    Fukuda, K., Tsunoda, T., Tamura, A., Takagi, T.: Towards information extraction: Identifying protein names from biological papers. In Proc. 3rd Paci. Symposium of Biocomputing (1998) 707–718Google Scholar
  26. 26.
    Proux, D., Rechenmann, F., Julliard, L., Pillet, V., Jacq, B.: Detecting gene symbols and names in biological texts: A first step toward pertinent information extraction. In: Genome Informatics, Universal Academy Press (1998) 72–80Google Scholar
  27. 27.
    Krauthammer, M., Rzhetsky, A., Morozov, P., Friedman, C.: Using BLAST for identifying gene and protein names in journal articles. Gene 259 (2000) 245–252CrossRefGoogle Scholar
  28. 28.
    Denk, A. J.: Activation of NF-kappa B via the Ikappa B kinase complex is both essential and sufficient for proinflammatory gene expression in primary endothelial cells. Biol Chem 30 Vol. 276 (2001) 28451–28458CrossRefGoogle Scholar
  29. 29.
    Stapley, B., Benoit, G.: Biobibliometrics: information retrieval and visualization from cooccurrences of gene names in medline abstracts. Pacific Symposium on Biocomputing 5 (2000) 529–540Google Scholar
  30. 30.
    Wong, L.: PIES A Protein Interaction Extraction System. Pacific Symposium on Biocomputing 6 (2001)Google Scholar
  31. 31.
    Jenssen, T.K., Laegreid, A., Komorowski, J., Hovig, E.: A literature network of human genes for high-throughput analysis of gene expression. Nature Genetics 28 (2001) 21–28CrossRefGoogle Scholar
  32. 32.
    Humphreys, K., Demetriou, G., Gaizauskas, R.: Bioinformatics Applications of Information Extraction from Scientific Journal Articles. Journal of Information Science 26 Vol. 2 (2000) 75–85CrossRefGoogle Scholar
  33. 33.
    Sekimizu, T., Park, H., Tsujii, J.: Identifying the interaction between genes and gene products based on frequently seen verbs in MEDLINE abstracts. in Genome Informatics. Universal Academy Press, Inc. (1998)Google Scholar
  34. 34.
    Thomas, J., Milward, D., Ouzounis, C., Pulman, S., Carroll, M.: Automatic extraction of protein interactions from scientific abstracts. Pacific Symposium on Biocomputing 5 (2000) 538–549Google Scholar
  35. 35.
    Leroy, G., Chen, H.: Filling preposition-based templates to capture information from medical abstracts. Pacific Symposium on Biocomputing 7 (2002)Google Scholar
  36. 36.
    Yakushiji, A., Tateisi, Y., Miyao, Y., Tsujii, J.: Event Extraction from Biomedical Papers Using a Full Parser. Pacific Symposium on. Biocomputing, 6 (2001) 408–419Google Scholar
  37. 37.
    Miterski, B., Boehringer, S., Klein, W., Sindern, E., Haupts, M., Schimrigk, S., Epplen, J.T.: Inhibitors in the NFκB cascade comprise prime candidate genes predisposing to multiple sclerosis, especially in selected combinations, Genes and Immunity, (2002) in press.Google Scholar
  38. 38.
    Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., Chen, Z.J.: Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103 Vol. 2 (2000) 351–361CrossRefGoogle Scholar
  39. 39.
    Yang, J., Lin, Y., Guo, Z., Cheng, J., Huang, J., Deng, L., Liao, W., Cheng, Z., Liu, Zg., Su, B.: The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2 Vol. 7 (2001) 620–624CrossRefGoogle Scholar
  40. 40.
    Heindl, B., Schmidt, R., Schmid, G., Haller, M., Pfaller, P., Gierl, L., Pollwein, B.: A Case-Based Consiliarius for Therapy Recommendation (ICONS): Computer-Based Advice for Calculated Antibiotic Therapy in Intensive Care Medicine. Computer Methods and Programs in Biomedicine 52 (1997) 117–127CrossRefGoogle Scholar
  41. 41.
    Schmidt, R., Gierl, L.: Case-based reasoning for antibiotics therapy advice: an investigation of retrieval algorithms and prototypes. Artif Intel Med 23 2001 171–186CrossRefGoogle Scholar
  42. 42.
    Gierl, L., Bull, M., Schmidt, R.: CBR in Medicine. In: Bartsch-Spörl B, Wess S, Burkhard H-D, Lenz M (Hrsg.) Case-Based Reasoning Technology-from Foundation to Applications. Springer-Verlag, Berlin (1998) 273–297Google Scholar
  43. 43.
    Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations and system approaches. AICOM 7 Vol. 1 (1994) 39–59Google Scholar
  44. 44.
    Tversky, A.: Features of Similarity. Psychological Review 84 (1977) 327–352CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Änne Glass
    • 1
  • Thomas Karopka
    • 1
  1. 1.Institute for Medical Informatics and BiometryUniversity of RostockRostockGermany

Personalised recommendations