Sequence Rules for Web Clickstream Analysis

  • Erika Blanc
  • Paolo Giudici
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2394)


We present new methodologies for the search of sequence rules in the analysis of web clickstream data. We distinguish direct and indirect sequence rules, and show how to draw data mining conclusions on the basis of them. We then compare sequence rules, which are local models, with a global probabilistic expert system model. Our analysis have been conducted on a real e-commerce dataset.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BLANC E., GIUDICI P. (2002): Statistical Models for web clickstream analysis, Technical Report, Submitted.Google Scholar
  2. 2.
    BLANC E., TARANTOLA C. (2002): Dependency Networks and Bayesian Networks for Web Mining, Technical Report, Submitted.Google Scholar
  3. 3.
    CABENA P., HADJINIAN P., STADLER R., VERHEES J. and ZANASI A. (1997): Discovering Data Mining from Concept to Implementation, Prentice-Hall, New York.Google Scholar
  4. 4.
    DI SCALA L., LA ROCCA L. (2002): A Markov Model for Web Data, Technical Report, Submitted.Google Scholar
  5. 5.
    GIUDICI P. (2001): Metodi statistici per le applicazioni di Data Mining, McGraw-Hill Libri Italia, Milano.Google Scholar
  6. 6.
    HAN J., KAMBER M. (2000), Data Mining: Concepts and Tecniques, Morgan Kaufmann.Google Scholar
  7. 7.
    HAND D. J., HEIKKI M., PADHRAIC SMYTH (2001), Principles of Data Mining, MIT Press.Google Scholar
  8. 8.
    HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J. (2001): The elements of statistical learning: data mining, inference and prediction, Springer-Verlag.Google Scholar
  9. 9.
    LAURITZEN S. (1996): Graphical Models, Clarendon Press, Oxford.Google Scholar
  10. 10.
    ROGNONI M., GIUDICI P., POLPETTINI P. (2002): Statistical models for the forecast of the visit sequences on web site, Technical Reports, Submitted.Google Scholar
  11. 11.
    SRIVASTAVA J., COOLEY R., DESHPANDE M. and TAN P. (2000): Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data, SIGKDD Explorations, vol. I2,12–23.CrossRefGoogle Scholar
  12. 12.
    WHITTAKER J. (1990): Graphical Models in Applied Multivariate Statistics, Wiley, Chichester.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Erika Blanc
    • 1
  • Paolo Giudici
    • 1
  1. 1.Department of Economics and Quantitative MethodsUniversity of PaviaPaviaItaly

Personalised recommendations