Aluminum and Gallium Hydrazides

  • Werner Uhl
Part of the Structure and Bonding book series (STRUCTURE, volume 105)


Aluminum and gallium hydrazides have found considerable interest in current research because they are potentially useful as single source precursors for the epitaxial growth of semi-conducting AlN or GaN films. Furthermore, they may exhibit singular structural properties owing to the capability of the hydrazido group to act as a bidentate ligand. The synthesis of those hydrazides succeeds by several methods, such as the alkane and hydrogen elimination, which requires the treatment of alanes or gallanes with hydrazine derivatives containing at least one N-H function. Furthermore, the formation of salts by the employment of lithium hydrazides and chloroaluminum orgallium compounds or the hydroalumination of 2,3-diazabutadiene derivatives are facile synthetic methods. These hydrazides adopt a great variety of structures with four-, five-, and six-membered heterocycles or with polycyclic frameworks and cages. With the exception of sterically insufficiently shielded derivatives of unsubstituted hydrazine N2H4, their thermal stability is high enough to allow a secure handling. Only at elevated temperature does thermolysis occur, which in some cases yielded the nitrides AlN and GaN.


Aluminum Gallium Hydrazine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fetter NR, Bartocha B (1961) Can J Chem 39: 2001CrossRefGoogle Scholar
  2. 2.
    Paterson WG, Onyszchuk M (1961) Can J Chem 39: 2324CrossRefGoogle Scholar
  3. 3.
    Fetter NR, Bartocha B, Brinckman FE Jr, Moore DW (1963) Can J Chem 41: 1359CrossRefGoogle Scholar
  4. 4.
    Bains MS, Bradley DC (1962) Can J Chem 40: 1350CrossRefGoogle Scholar
  5. 5.
    Bock H (1962) Z Naturforsch 17b: 429Google Scholar
  6. 6.
    Pearton SJ, Ren F (2000) Adv Mater 12: 1571CrossRefGoogle Scholar
  7. 7.
    Gaskill DK, Bottka N, Lin MC (1986) J Crystal Growth 77: 418CrossRefGoogle Scholar
  8. 8.
    Okumura H, Misawa S, Yoshida S (1991) Appl Phys Lett 59: 1058CrossRefGoogle Scholar
  9. 9.
    Miyoshi S, Onabe K, Ohkouchi N, Yaguchi H, Ito R, Fukatsu S, Shiraki Y (1992) J Crystal Growth 124: 439CrossRefGoogle Scholar
  10. 10.
    Lee RT, Stringfellow GB (1999) J Electron Mater 28: 963CrossRefGoogle Scholar
  11. 11.
    Mizuta M, Fujieda S, Matsumoto Y, Kawamura T (1986) Jpn J Appl Phys 25: L945CrossRefGoogle Scholar
  12. 12.
    Fujieda S, Mizuta M, Matsumoto Y (1987) Jpn J Appl Phys 26: 2067CrossRefGoogle Scholar
  13. 13.
    Okumura H, Yoshida S, Misawa S, Sakuma E (1992) J Crystal Growth 120: 114CrossRefGoogle Scholar
  14. 14.
    Lakhotia V, Neumayer DA, Cowley AH, Jones RA, Ekerdt JG (1995) Chem Mater 7: 546CrossRefGoogle Scholar
  15. 15.
    Uhl W, Molter J, Saak W (1999) Z Anorg Allg Chem 625: 321CrossRefGoogle Scholar
  16. 16.
    Uhl W, Molter J, Neumüller B, Saak W (2000) Z Anorg Allg Chem 626: 2284CrossRefGoogle Scholar
  17. 17.
    Peters DW, Bourret ED, Power MP, Arnold J (1999) J Organomet Chem 582: 108CrossRefGoogle Scholar
  18. 18.
    Peters DW, Power MP, Bourret ED, Arnold J (1998) Chem Commun 753Google Scholar
  19. 19.
    Uhl W, Molter J, Koch R (1999) Eur J Inorg Chem 2021Google Scholar
  20. 20.
    Janik JF, Duesler EN, Paine RT (1993) Chem Ber 126: 2649CrossRefGoogle Scholar
  21. 21.
    Uhl W, Molter J, Neumüller B (2001) Inorg Chem 40: 2011CrossRefGoogle Scholar
  22. 22.
    Kim Y, Kim JH, Park JE, Song H, Park JT (1997) J Organomet Chem 545–546: 99CrossRefGoogle Scholar
  23. 23.
    Cho D, Park JE, Bae B-J, Lee K, Kim B, Park JT (1999) J Organomet Chem 592: 162CrossRefGoogle Scholar
  24. 24.
    Gibson VC, Redshaw C, White AJP, Williams DJ (1999) Angew Chem Int Ed 38: 961CrossRefGoogle Scholar
  25. 25.
    Luo B, Gladfelter WL (2000) Chem Commun 825Google Scholar
  26. 26.
    Silverman JS, Abernethy CD, Jones RA, Cowley AH (1999) Chem Commun 1645Google Scholar
  27. 27.
    Uhl W, Molter J, Neumüller B (2000) Organometallics 19: 4422CrossRefGoogle Scholar
  28. 28.
    Nöth H, Seifert T (1998) Eur J Inorg Chem 1931Google Scholar
  29. 29.
    Neumayer DA, Cowley AH, Decken A, Jones RA, Lakhotia V, Ekerdt JG (1995) Inorg Chem 34: 4698CrossRefGoogle Scholar
  30. 30.
    Uhl W, Molter J, Koch R (2000) Eur J Inorg Chem 2255Google Scholar
  31. 31.
    Wehmschulte RJ, Power PP (1996) Inorg Chem 35: 2717CrossRefGoogle Scholar
  32. 32.
    Uhl W, Molter J, Neumüller B (2001) Chem Eur J 7: 1510CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Werner Uhl
    • 1
  1. 1.Fachbereich Chemie der Philipps-Universität MarburgMarburgGermany

Personalised recommendations