Advertisement

Borates in Industrial Use

  • David M. Schubert
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 105)

Abstract

Boron compounds find extensive use in a wide range of industrial applications, nearly all involving boron-oxygen compounds. Although quite diverse, these end uses depend on the same fundamental aspects of the structure and bonding patterns of boron. The most important industrial uses of boron compounds are discussed along with recent develop- ments in the understanding of fundamental chemistry of crystalline and vitreous borates that underlie these applications. The formation of ester linkages to boron leads to industrial uses and provides a basis for the biological interactions of boron. Full recognition of the essential role that boron plays in biological systems has only come about in the last few years. The use of boron in the manufacture of glass and other vitreous products accounts for more than one half of all boron use. Perborates, agriculture, wood preservation, and fire retardancy are also important application areas. New applications are being developed for the use of borates in the pulp and paper and ceramics industries, among others.

Keywords

Boron Borate Glass Ester Bioessentiality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argust P (1998) Biological Trace Element Research 66: 131CrossRefGoogle Scholar
  2. 2.
    Garrett DE (1998) Borates, Handbook of Deposits, Processing, Properties, and Use, Academic Press, San DiegoGoogle Scholar
  3. 3.
    Brotherton RJ (1994) In: King RB (ed), Encyclopedia of Inorganic Chemistry. John Wiley & Sons, Chichester, 1: 374Google Scholar
  4. 4.
    Schubert DM (1993) Boron Compounds-Boron Hydrides, Heteroboranes and Their Metalla Derivatives. In: Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edn, John Wiley & Sons, New York and 5th Edn (2002) published on-lineGoogle Scholar
  5. 5.
    A notable exception is the icosahedral “aromatic” cluster [B12(OH)12]2- and related compounds which contain twelve equivalent B-O bonds, see Maderna A, Knobler CB, Hawthorne MF (2001) Angew Chem Int Ed 40: 9Google Scholar
  6. 6.
    Geisinger KI, Gibbs GV, Navrotsky A (1985) Phys Chem Minerals 11: 266CrossRefGoogle Scholar
  7. 7.
    Navrotsky A (1996) In: Grew ES, Anovitz LM (eds), Reviews in Mineralogy. The Mineralogical Society of America, Washington DC 33: 165Google Scholar
  8. 8.
    Ingri N (1963) Sven Kem Tidskr 75: 199Google Scholar
  9. 9.
    Christ CL (1960) Am Mineralogist 45: 334Google Scholar
  10. 10.
    Edwards JO, Ross VF (1960) J Inorg Nucl Chem 15: 329CrossRefGoogle Scholar
  11. 11.
    Tennyson C (1963) Fortschr Mineral 41: 64Google Scholar
  12. 12.
    Heller G (1970) Fortschr Chem Forsch 15: 206CrossRefGoogle Scholar
  13. 13.
    Burns PC (1995) Can Mineralogist 33: 1167Google Scholar
  14. 14.
    Grice JD, Burns PC, Hawthorne FC (1999) Can Mineralogist 37: 731Google Scholar
  15. 15.
    Simonov MA, Kazanskaya EV, Egorov-Tismenko YK, Zhelezin EP, Belov NV (1976/77) Dokl Akad Nauk SSSR 91: 230Google Scholar
  16. 16.
    Paton F, McDonald SGG (1957) Acta Crystallogr 10: 653CrossRefGoogle Scholar
  17. 17.
    Simonov MA, Egorov-Tismenko YK, Belov NV (1976) Soviet Phys-Cryst 21: 332Google Scholar
  18. 18.
    Kazanskaya EV, Chemodina TN, Egorov-Tismenko, Yu K, Simonov MA, Belov NV (1977) Sov Phys Crystallogr 22: 35Google Scholar
  19. 19.
    Coulson CA (1964) Acta Crystallogr 17: 1086CrossRefGoogle Scholar
  20. 20.
    Dal Negro A, Martin-Pozas JM, Ungaretti L (1975) Am Mineralogist 60: 879Google Scholar
  21. 21.
    Corraza E (1976) Acta Cryst B 32: 1329Google Scholar
  22. 22.
    Ozols YK, Tetere IV, Ievins AF (1973) Akad Nauk Latv SSR, Ser Kim 7: 3Google Scholar
  23. 23.
    Simonov MA, Egonov-Tismenko YK, Kazanskaya EV, Belokoneva EL, Belov NV (1978/79) Sov Phys-Dokl 23: 159Google Scholar
  24. 24.
    Callegari A, Mazzo F, Tadlini C (2001) Can Mineralogist 39: 139Google Scholar
  25. 25.
    Merlino S, Santori F (1972) Acta Cryst B 28: 3559Google Scholar
  26. 26.
    Ghose S, Wan C, Clark JR (1978) Am Mineralogist 63: 160Google Scholar
  27. 27.
    Wan C, Ghose S (1977) Am Mineralogist 62: 1135; Erd RC, McAllister JF, Eberlein GD (1979) Am Mineralogist 64: 369Google Scholar
  28. 28.
    Hanic F, Lindqvist O, Nyborg J, Zedler J (1971) Coll Czech Chem Commun 36: 3678; Dal Negro A, Ungarretti L, Sabelli C (1971) Am Mineralogist 56: 1553Google Scholar
  29. 29.
    Burns PC, Hawthorne FC (1993) Can Mineralogist 31: 297Google Scholar
  30. 30.
    Cooper WF, Larsen FK, Coppens P, Giese RF (1973) Am Mineralogist 58: 21Google Scholar
  31. 31.
    Erd RC, McAllister JF, Vlisidis AC (1961) Am Mineralogist 46: 560Google Scholar
  32. 32.
    Schubert DM (1997) US Patent 5,688,481Google Scholar
  33. 33.
    Burns PC, Grice JD, Hawthorne FC (1995) Can Mineralogist 33: 1131Google Scholar
  34. 34.
    Hawthorne FC (1985) Am Mineral 70: 455Google Scholar
  35. 35.
    Hawthorne FC (1986) Can Mineral 24: 625Google Scholar
  36. 36.
    Hawthorne FC (1990) Can Mineral 192: 1Google Scholar
  37. 37.
    Schindler M, Hawthrone FC (2001) Can Mineralogist 39: 1225CrossRefGoogle Scholar
  38. 38.
    Hawthorne FC (1992) Z Kristallogr 201: 183CrossRefGoogle Scholar
  39. 39.
    Bowden GH (1980) Boron Oxygen Compounds. Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol V. Longman Group, LondonGoogle Scholar
  40. 41.
    Merlino S, Sartori F (1971) Science 171: 377CrossRefGoogle Scholar
  41. 42.
    Schubert DM, Visi MZ, Knobler CB (1999) Inorg Chem 39: 2250CrossRefGoogle Scholar
  42. 43.
    Rumanova IM, Razmanova ZP, Belov NV (1972) Sov Phys Dokl 16: 518Google Scholar
  43. 44.
    Yamnova NA, Egorov-Tismenko YK, Pushkarovskii DY, Malinko SV, Dorokova GI (1993) Krystallogrfiya 38: 71Google Scholar
  44. 45.
    Schubert DM, Alam F, Visi M, Knobler CB (2003) Chemistry of Materials, in pressGoogle Scholar
  45. 46.
    Bray PJ (1997) In: Wright AC, Feller SA, Hannon AC (eds), Borate Glasses, Crystals & Melts. Society of Glass Technology, SheffieldGoogle Scholar
  46. 47.
    Teter M (1997) In: Wright AC, Feller SA, Hannon AC (eds), Borate Glasses, Crystals & Melts. Society of Glass Technology, SheffieldGoogle Scholar
  47. 48.
    Kroeker S, Stebins JF (2001) Inorg Chem 40: 6239CrossRefGoogle Scholar
  48. 49.
    Uhlmann DR, Shaw RR (1969) J Non-Cryst Solids 1: 347CrossRefGoogle Scholar
  49. 50.
    Krogh-Moe J (1965) Phys Chem Glasses 6: 46Google Scholar
  50. 51.
    Chryssikos GD, Kamitsos EI (1997) In: Wright AC, Feller SA, Hannon AC (eds), Borate Glasses, Crystals & Melts. Society of Glass Technology, SheffieldGoogle Scholar
  51. 52.
    Hunter DL, Steinberg H (1960) US Patent 1,203,698Google Scholar
  52. 53.
    Groszos SJ, Day NE (1960) US Patent 2,942,021Google Scholar
  53. 54.
    Wei PW, Atwood DA (1998) Inorg Chem 37: 4934CrossRefGoogle Scholar
  54. 55.
    Knoeck J, Taylor JK (1969) Anal Chem 41: 1730CrossRefGoogle Scholar
  55. 56.
    Acree TE (1973) Adv Chem Ser 117: 208CrossRefGoogle Scholar
  56. 57.
    Okami Y, Okazaki T, Kitahara T, Umezawa H (1976) J Antibiot 29: 1019; Nakamura H, Iitaka Y, Kitahara T, Okazaki T, Okami Y (1977) J Antibiot 30: 714Google Scholar
  57. 58.
    Hutter R, Keller-Schierlein W, Knusel F, Prelog V, Rodgers GC Jr, Suter P, Vogel G, Voser W, Zahner H (1967) Helv Chim Acta 50: 1533; Dunitz JD, Hawley DM, Miklos D, White DNJ, Berlin Y, Marcesic R, Prelog V (1971) Helv Chim Acta 54: 1709CrossRefGoogle Scholar
  58. 59.
    Hemsheidt T, Puglisi MP, Larsen LK, Patterson GML, Moore RE, Rois JL, Clardy J (1994) J Org Chem 59: 3467CrossRefGoogle Scholar
  59. 60.
    Herbert I, Schummer D, Gerth K, Hofle G, Reichenbach H (1995) J Antibiotics 48: 26Google Scholar
  60. 61.
    Warington K (1923) Ann Bot 37: 627Google Scholar
  61. 62.
    Blevins DG, Lukaszewski KM (1998) Annu Rev Plant Physiol Mol Biol 49: 481CrossRefGoogle Scholar
  62. 63.
    Brown PH, Hu H (1996) Annals of Botany 77: 497CrossRefGoogle Scholar
  63. 64.
    Hu H, Brown, PH (1997) Plant Physiol 113: 649CrossRefGoogle Scholar
  64. 65.
    Hu H, Penn SG, Lebrilla CG, Brown PH (1997) Plant Physiol 113: 649CrossRefGoogle Scholar
  65. 66.
    O’Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Science 284: 846CrossRefGoogle Scholar
  66. 66.
    Kobayashi M, Matoh T, Azuma (1996) J Plant Physiol 110: 1017Google Scholar
  67. 67.
    O’Neill MA, Warrenfeltz D, Kates K, Pellerin P, Doco T, et al. (1996) J Biol Chem 271: 22923CrossRefGoogle Scholar
  68. 68.
    Ishi T, Matsunaga T (1996) Carbohydr Res 284: 1CrossRefGoogle Scholar
  69. 69.
    Kaneko S, Ishi T, Matsunaga T (1997) Phytochemistry 44: 243CrossRefGoogle Scholar
  70. 70.
    Jackson JF (1991) In: Randall DD, Blevins DG, Miles CD (eds), Current Topics in Plant Biochemistry and Physiology. Columbia Univ Mo press, 10: 221Google Scholar
  71. 71.
    Lawrence K, Bhalla DG, Misra PC (1995) J Plant Physiol 146: 1143Google Scholar
  72. 72.
    Barr R, Bottger M, Crane FL (1993) Biochem Mol Biol Int 31: 31Google Scholar
  73. 73.
    Barr R, Crane FL (1991) In: Randall DD, Blevins DG, Miles CD (eds), Current Topics in Plant Biochemistry and Physiology. Columbia Univ Mo press, 10: 290Google Scholar
  74. 74.
    Morre DJ, Navas P, Penel C, Castillo FJ (1986) Protoplasma 133: 195CrossRefGoogle Scholar
  75. 75.
    Brown JC (1979) Plant Nutr 1: 39CrossRefGoogle Scholar
  76. 76.
    Cakmak I, Kurz H, Marschner H (1995) Physiol Plant 95: 11CrossRefGoogle Scholar
  77. 77.
    Shkolnik MY (1984) Trace Elements in Plants, New York, ElsevierGoogle Scholar
  78. 78.
    Levy HA, Lisenky GC (1978) Acta Crystallogr B34: 3502Google Scholar
  79. 79.
    Fort DJ, Propst TL, Stover EL, Strong PL, Murray FJ (1998) Biological Trace Element Research 66: 237CrossRefGoogle Scholar
  80. 80.
    Rowe RI, Bouzan C, Nabili S, Eckhert CD (1998) Biological Trace Element Research 66: 261CrossRefGoogle Scholar
  81. 81.
    Chapin RE, Ku WW, Kenney MA, McCoy H (1998) Biological Trace Element Research 66: 395CrossRefGoogle Scholar
  82. 82.
    Sutherland B, Strong P, King JC (1998) Biological Trace Element Research 66: 193CrossRefGoogle Scholar
  83. 83.
    Black JA, Barnum JB, Birge WJ (1993) Chemosphere 26;1382CrossRefGoogle Scholar
  84. 84.
    Richold M (1998) Biological Trace Element Research 66: 121CrossRefGoogle Scholar
  85. 85.
    Hubbard S (1998) Biological Trace Element Research 66: 343CrossRefGoogle Scholar
  86. 86.
    Powell DR, Gaines DF, Zerella PJ, Smith RA (1991) Acta Crystallogr C47: 2279Google Scholar
  87. 87.
    Levy AH, Lisensky GC (1978) Acta Crystallogr B34: 3502Google Scholar
  88. 88.
    Zachariesen WH (1954) Acta Crystallogr 7: 305CrossRefGoogle Scholar
  89. 89.
    Bayer AJ, Erdemir A (1991) Adv Mater Process 140: 40Google Scholar
  90. 90.
    Schubert DM (1995) US Pat 5,472,644; Schubert DM (1994) US Patent 5,342,553Google Scholar
  91. 91.
    Sabelli C, Stoppioni A (1978) Can Mineralogist 16: 75Google Scholar
  92. 92.
    Smith RA (1997) In: Wright AC, Feller SA, Hannon AC (eds), Borate Glasses, Crystals & Melts. Society of Glass Technology, SheffieldGoogle Scholar
  93. 93.
    Loewenstein KL (1993) The Manufacturing Technology of Continuous Glass Fibers, 3rd edn., Elsevier, AmsterdamGoogle Scholar
  94. 94.
    Harding FL, Bauer JF, Russel HH, Xu, X (1997) In: Wright AC, Feller SA, Hannon AC (eds), Borate Glasses, Crystals & Melts. Society of Glass Technology, SheffieldGoogle Scholar
  95. 95.
    See for example, Schubert DM, Manning MJ (1997) US Patent 5,612,094Google Scholar
  96. 96.
    Pizer R, Tihal C (1987) Inorg Chem 13: 117Google Scholar
  97. 97.
    McKillop A, Sanderson WR (1995) Tetrahedron 51: 6145CrossRefGoogle Scholar
  98. 98.
    Greenhill-Hooper MJ. Tenside Surfactants Deterg 33: 366Google Scholar
  99. 99.
    Greenhill-Hooper MJ (2000) World Surfactants Congr 5: 664Google Scholar
  100. 100.
    Tran H, Bair CM, McBroom RB, Strang W, Morgan B (1999) Proceeding of the 1999 TAPPI Engineering Conference 1: 163Google Scholar
  101. 101.
    Noirot MD (1999) Amer Ceram Soc Bull, AugustGoogle Scholar
  102. 102.
    Cook SG (2002) Ceramic Engineering and Science Proceedings 23: 47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • David M. Schubert
    • 1
  1. 1.U.S. Borax Inc.ValenciaUSA

Personalised recommendations