A Framework to Review Complex Experimental Knowledge

  • Michel Sala
  • Pierre Pompidor
  • Danièle Hérin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2425)


The aim of our work is to provide researchers in experimental sciences means to review their knowledge in a given domain, while confronting it to experimentation data or to calculation tool results. To set up this environment and a methodology, we described the researcher’s knowledge as an oriented object framework and we make use of a format of exchange facilitating the comparison of the results generated by the different tools. Besides, our tool is able to provide researchers the useful information which is extracted from the domain databases. In this article, we present the architecture of our approach and its components. Finally, we will illustrate our framework by an acquisition/revision cycle argued by an example in immunogenetics.


modeling of knowledge exchange of data aid to the discovery explanation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Borgida, R. Brachman, D. McGuiness, L. Resnick: Classic, a structural data model for objets, in procedings of ACM SIGMOD, 1989Google Scholar
  2. 2.
    M. Genesereth, R. Fikes: Knowledge Interchange Format, version 3.0 reference manual, technical report Logic-92-1, Computer Science Departement, Stanford University, Palo Alto, California, 1992Google Scholar
  3. 4.
    D. Fensel, I. Horrocks, F. van Harmelen, D. McGuinness, P. F. Patel-Schneider: OIL An Ontology Infrastructure for Semantic Web In IEEE Intelligent Systems, Vol 16, N° 2, 2001Google Scholar
  4. 5.
    M.-S. Segret, P. Pompidor, D. Herin, M. Sala: Use of ontologies to integrate some information semi-structured exits of pages web, INFORSID’2000, Lyon pp 37–55Google Scholar
  5. 6.
    P.D. Karp, K.V. Chaudhri, J. Thomere: XOL: An XML-Based Ontology Exchange Language Technical Note 559, AI Center, SRI Internationnal,1999Google Scholar
  6. 9.
    M. Sala “Environnement pour le transfert de connaissances d’Agents Artificiel vers un agent humain-Application à la classification automatique de séquences protéiques” III ème Rencontres des Jeunes Chercheurs en I.A., Luminy, 1994Google Scholar
  7. 10.
    E.A. Kabat, T.T Wu, H.M. Perry, K.S. Gottesman, C. Foeller Sequences of proteins of immunological interest-Public Health Service National Institutes of Health-US Departement of Health and Human Services, 1991Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Michel Sala
    • 1
  • Pierre Pompidor
    • 1
  • Danièle Hérin
    • 1
  1. 1.LIRMM - Univ. Montpellier II / CNRS2LASER - Univ. Montpellier IMontpellier cedex 5France

Personalised recommendations