Skip to main content

The Dynamic Response of Magnetization to Hot Spins

  • Chapter
  • First Online:
Book cover Spin Dynamics in Confined Magnetic Structures II

Part of the book series: Topics in Applied Physics ((TAP,volume 87))

  • 1014 Accesses

Abstract

When electrons interact with a ferromagnet, their spin polarization vector is expected to move, depending on the magnetization of the ferromagnetic material. This spin motion, consisting of an azimuthal precession and a polar rotation about the magnetization direction, is measured. The precession of the spin polarization vector generates a torque on magnetization that turns out to be large with low-energy electrons. This makes injection as well as reflection of spin-polarized electrons an attractive alternative concept for magnetization switching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Slonczewski: Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159, L1 (1996)

    Article  ADS  Google Scholar 

  2. L. Berger: Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54, 9353 (1996)

    Article  ADS  Google Scholar 

  3. Ya. Bazaliy, A. Jones, Shou-Cheng Zhang: Modification of the Landau-Lifshitz equation in the presence of a spin-polarized current in colossal-and giant-magnetoresistive materials, Phys. Rev. B 57, R3213 (1998)

    Article  ADS  Google Scholar 

  4. M. Tsoi, A.G.M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, P. Wyder: Excitation of a magnetic multilayer by an electric current, Phys. Rev. Lett. 80, 4281 (1998)

    Article  ADS  Google Scholar 

  5. E. B. Myers, D.C. Ralph, J. A. Katine, R. N. Louie, R. A. Buhrman: Current-induced switching of domains in magnetic multilayer devices, Science 285, 867 (1999)

    Article  Google Scholar 

  6. J. Z. Sun: Current-driven magnetic switching in manganite trilayer junctions, J. Magn. Magn. Mater. 202, 157 (1999)

    Article  ADS  Google Scholar 

  7. J.-E. Wegrowe, D. Kelly, Y. Jaccard, Ph. Guittienne, J.-Ph. Ansermet: Current-induced magnetization reversal in magnetic nanowires, Europhys. Lett. 45, 626 (1999)

    Article  ADS  Google Scholar 

  8. M. Tsoi, A.G.M. Jansen, J. Bass, W.-C. Chiang, V. Tsoi, P. Wyder: Generation and detection of phase-coherent current-driven magnons in magnetic multilayers, Nature 406, 46 (2000)

    Article  ADS  Google Scholar 

  9. Y. Acremann, M. Buess, H. Back, M. Dumm, G. Bayreuther, D. Pescia: Ultrafast generation of magnetic fields in a Schottky diode, Nature 414, 51 (2001)

    Article  ADS  Google Scholar 

  10. W. Weber, S. Riesen, H. Siegmann: Magnetization precession by hot spin injection, Science 291, 1015 (2001)

    Article  ADS  Google Scholar 

  11. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  12. T. Valet, A. Fert: Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B 48, 7099 (1993)

    Article  ADS  Google Scholar 

  13. N. F. Mott, H. Jones: The Theory of the Properties of Metals and Alloys (Clarendon Press, Oxford 1936) 186

    Google Scholar 

  14. D.P. Pappas, K.-P. Kämper, P. Miller, H. Hopster, D.E. Fowler, C. R. Brundle, A. C. Luntz, Z.-X. Shen: Spin-dependent electron attenuation by transmission through thin ferromagnetic films, Phys. Rev. Lett. 66, 504 (1991)

    Article  ADS  Google Scholar 

  15. G. Schönhense, H. C. Siegmann: Transmission of electrons through ferromagnetic material and applications to detection of electron spin polarization, Ann. Physik 2, 465 (1993)

    Article  Google Scholar 

  16. Y. Lassailly, H.-J. Drouhin, A. J. van der Sluijs, G. Lampel, C. Marlière: Spindependent transmission of low-energy electrons through ultrathin magnetic layers, Phys. Rev. B 50, 13054 (1994)

    Article  ADS  Google Scholar 

  17. D. Oberli, R. Burgermeister, S. Riesen, W. Weber, H. Siegmann: Total scattering cross section and spin motion of low energy electrons passing through a ferromagnet, Phys. Rev. Lett. 81, 4228 (1998)

    Article  ADS  Google Scholar 

  18. Note that precession of the electron spin-polarization vector caused by elastic exchange scattering as proposed by J. Byrne and P. S. Farago [Faraday rotation of electron spin polarization, in J. Phys. B 4, 954 (1971)] can be neglected. As is shown in Sect 2.4, elastic exchange scattering can be of only minor importance in our experiments

    Article  ADS  Google Scholar 

  19. H.A. Tolhoek: Electron polarization, theory and experiment, Rev. Mod. Phys. 28, 277 (1956)

    Article  MATH  ADS  Google Scholar 

  20. V. Grolier, J. Ferré, A. Maziewski, E. Stefanowicz, D. Renard: Magneto-optical anisometry of ultrathin cobalt films, J. Appl. Phys. 73, 5939 (1993)

    Article  ADS  Google Scholar 

  21. M. P. Seah, W. A. Dench: Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal. 1, 2 (1979)

    Article  Google Scholar 

  22. H. J. Drouhin, A. J. van der Sluijs, Y. Lassailly, G. Lampel: Spin-dependent transmission of free electrons through ultrathin cobalt layers, J. Appl. Phys. 79, 4734 (1996)

    Article  ADS  Google Scholar 

  23. O. Paul: Dissertation ETH No. 9210 (1990)

    Google Scholar 

  24. C. Marlière, D. Renard, J.-P. Chauvineau: Study of interface roughness and crystallographic structure of Au/Co/Au sandwiches, Thin Solid Films 201, 317 (1991)

    Article  ADS  Google Scholar 

  25. W. Weber, A. Bischof, R. Allenspach, C.H. Back, J. Fassbender, U. May, B. Schirmer, R.M. Jungblut, G. Güntherodt, B. Hillebrands: Structural relaxation and magnetic anisotropy in Co/Cu(001) films, Phys. Rev. B 54, 4075 (1996)

    Article  ADS  Google Scholar 

  26. H. Siegmann: Selected Topics on Electron Physics, D. M. Campbell, H. Kleinpoppen (Eds.) (Plenum, New York 1996)

    Google Scholar 

  27. M. P. Gokhale, D. L. Mills: Origin of spin-dependent asymmetries in electron transmission through ultrathin ferromagnetic films, Phys. Rev. Lett. 66, 2251 (1991)

    Article  ADS  Google Scholar 

  28. M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli, H. C. Siegmann: Ultrafast spin-dependent electron dynamics in fcc Co, Phys. Rev. Lett. 79, 5158 (1997)

    Article  ADS  Google Scholar 

  29. E. Colavita, M. De Crescenzi, L. Papagno, R. Scarmozzino, L.S. Caputi, R. Rosei, E. Tosatti: Single-particle and collective excitations in ferromagnetic iron from electron-energy-loss spectroscopy, Phys. Rev. B 25, 2490 (1982)

    Article  ADS  Google Scholar 

  30. R. Feder: Spin-polarised low-energy electron diffraction, J. Phys. C 14, 2049 (1981)

    Article  ADS  Google Scholar 

  31. T. Duden, E. Bauer: Spin-polarized low energy electron microscopy, Surf. Rev. Lett. 5, 1213 (1998)

    Article  Google Scholar 

  32. D. Tillmann, R. Thiel, E. Kisker: Very-low-energy spin-polarized electron diffraction from Fe(001), Z. Phys. B 77, 1 (1989)

    Article  ADS  Google Scholar 

  33. The phase shift has been discussed in the literature only for an absolute band gap [see for instance J. B. Pendry, S. J. Gurman: Theory of surface states: General criteria for their existence, Surf. Sci. 49, 87 (1975)], but this statement is still true for a relative band gap, at least for a certain portion of the reflected electrons

    Article  ADS  Google Scholar 

  34. A. Shorikov, V. I. Anisimov: private communication

    Google Scholar 

  35. S. F. Cheng, V. G. Harris, G. A. Prinz: Dependency of coercivity on Co layer thickness in Co/Cu multilayer structures, IEEE Trans. Magn. 33, 3529 (1997)

    Article  ADS  Google Scholar 

  36. C.H. Back, R. Allenspach, W. Weber, S.S.P. Parkin, D. Weller, E.L. Garwin, H. C. Siegmann: Minimum field strength in precessional magnetization reversal, Science 285, 864 (1999)

    Article  Google Scholar 

  37. Y. Acremann, C.H. Back, M. Buess, O. Portmann, A. Vaterlaus, D. Pescia, H. Melchior: Imaging precessional motion of the magnetization vector, Science 290, 492 (2000)

    Article  ADS  Google Scholar 

  38. A. Vaterlaus, T. Beutler, D. Guarisco, M. Lutz, F. Meier: Spin-lattice relaxation in ferromagnets studied by time-resolved spin-polarized photoemission, Phys. Rev. B 46, 5280 (1992)

    Article  ADS  Google Scholar 

  39. A. Scholl, L. Baumgarten, R. Jacquemin, W. Eberhardt: Ultrafast spin dynamics of ferromagnetic thin films observed by femtosecond spin-resolved two-photon photoemission, Phys. Rev. Lett. 79, 5146 (1997)

    Article  ADS  Google Scholar 

  40. H. C. Siegmann, E. L. Garwin, C. Y. Prescott, J. Heidmann, D. Mauri, D. Weller, R. Allenspach, W. Weber: Magnetism with picosecond field pulses, J. Magn. Magn. Mater. 151, L8 (1995)

    Article  ADS  Google Scholar 

  41. R. Allenspach: Ultrathin films: Magnetism on the microscopic scale, J. Magn. Magn. Mater. 129, 160 (1994)

    Article  ADS  Google Scholar 

  42. N. Garcia, H. Rohrer, I. G. Saveliev, Y.-W. Zhao: Negative and positive magnetoresistance manipulation in an electrodeposited nanometer Ni contact, Phys. Rev. Lett. 85, 3053 (2000)

    Article  ADS  Google Scholar 

  43. L. Berger: Precession of conduction-electron spins near an interface between normal and magnetic metals, IEEE Trans. Magn. 31, 3871 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weber, W., Riesen, S., Siegmann, H.C. (2003). The Dynamic Response of Magnetization to Hot Spins. In: Hillebrands, B., Ounadjela, K. (eds) Spin Dynamics in Confined Magnetic Structures II. Topics in Applied Physics, vol 87. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46097-7_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-46097-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44084-0

  • Online ISBN: 978-3-540-46097-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics