Advertisement

Spin Damping in Ultrathin Magnetic Films

  • Douglas L. Mills
  • Sergio M. Rezende
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 87)

Abstract

This chapter reviews the origin of the damping of spin motions in ultra-thin ferromagnetic films and multilayer structures, with focus on the linear response regime probed by ferromagnetic resonance or Brillouin light scattering. We begin with a description of the spin response provided by the Landau-Lifshitz equation, which ascribes damping to dissipative processes of intrinsic origin. It is noted that the form of the damping term should be modified in anisotropic materials, and explicit expressions are provided for the form of a generalized damping term in bulk matter. We then turn to an extrinsic damping mechanism, the two-magnon process, which, recent experiments illustrate, plays a major role in spin damping in ultrathin films and multilayer structures. The history of this mechanism in ferromagnetic resonance studies is reviewed, the physical reasons for it to be active in ultrathin ferromagnetic films are discussed, and we the review recent experimental studies that have verified central predictions of the theory.

Keywords

Line Width Spin Wave Ferromagnetic Resonance Yttrium Iron Garnet Lifshitz Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schlomann, R. Tutison, J. Weissman. H. J. Van Hook, T. Vatimos: Epitaxial Fe films on GaAs for hybrid semiconductor-magnetic memories, J. Appl. Phys. 63, 3140 (1988)CrossRefADSGoogle Scholar
  2. 2.
    R. E. Camley, D. L. Mills: Theory of microwave propagation in dielectric/magnetic film structures, J. Appl. Phys. 82, 3058 (1996)CrossRefADSGoogle Scholar
  3. 3.
    N. Cramer, D. Lucic, R.E. Camley, Z. Celinski: High attenuation tunable microwave notch filters utilizing ferromagnetic resonance, J. Appl. Phys. 87, 6911 (1999)CrossRefADSGoogle Scholar
  4. 4.
    B. Heinrich: Ferromagnetic resonance in ultrathin structures, in B. Heinrich, J. Bland (Eds.): Ultrathin magnetic structures II, (Springer, Berlin, Heidelberg 1994) Chap. 3Google Scholar
  5. 5.
    G. A. Prinz: Magnetic metal films on semiconductor substrates, in B. Heinrich, J. Bland (Eds.): Ultrathin magnetic structures II, (Springer, Berlin, Heidelberg 1994) Chap. 1Google Scholar
  6. 6.
    R.D. McMichael, M.D. Stiles, P. J. Chen, W.F. Egelhoff, Jr.: Ferromagnetic resonance line width in thin films coupled to NiO, J. Appl. Phys. 83, 7037 (1998)CrossRefADSGoogle Scholar
  7. 7.
    R. Arias, D. L. Mills: Extrinsic contributions to the ferromagnetic resonance response of ultrathin films, Phys. Rev. B 60, 7395 (1999)CrossRefADSGoogle Scholar
  8. 8.
    A. Azevedo, A. B. Oliveira, F. M. de Aguiar, S. M. Rezende: Extrinsic contributions to spin wave damping and renormalization in thin Ni50Fe50 films, Phys. Rev. B 62, 5331 (2000)CrossRefADSGoogle Scholar
  9. 9.
    R.D. McMichael, D.J. Twisselmann, J.E. Bonevich, P. J. Chen, W.F. Egelhoff Jr., S. E. Russek: Ferromagnetic resonance mode interactions in periodically perturbed films, J. Appl. Phys. 91, 8647 (2002)CrossRefADSGoogle Scholar
  10. 10.
    S.M. Rezende, A. Azevedo, M. A. Lucena, F. M. Aguiar: Anomalous spin wave damping in exchange-biased films, Phys. Rev. B 63, 214416 (2001)CrossRefADSGoogle Scholar
  11. 11.
    L. Berger: Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54, 9353 (1996)CrossRefADSGoogle Scholar
  12. 12.
    Y. Tserkovnyak, A. Brataas, G.E.W. Bauer: Enhanced Gilbert damping in thin ferromagnet films, Phys. Rev. Lett. 88, 117601 (2002)CrossRefADSGoogle Scholar
  13. 13.
    R. Urban, G. Woltersdorf, B. Heinrich: Gilbert damping in single and multilayer ultrathin films, Role of interfaces in non-local spin dynamics, Phys. Rev. Lett. 87, 217204 (2001)CrossRefADSGoogle Scholar
  14. 14.
    R. E. Camley, D. L. Mills: Surface response of exchange and dipolar coupled ferromagnets; application to light scattering from magnetic surfaces, Phys. Rev. 18, 4821 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    R. E. Camley, T. S. Rahman, D. L. Mills: Theory of light scattering by the spin wave excitations of thin ferromagnetic films, Phys. Rev. B 23, 1226 (1981)CrossRefADSGoogle Scholar
  16. 16.
    N. Bertram, V. Safonov, Z. Jin: Thermal magnetization noise, damping fundamentals and mode analysis: Application to a thin film sensor, IEEE Trans. Magn. 38, 2514 (2002)CrossRefADSGoogle Scholar
  17. 17.
    S. M. Bhagat, P. Lubitz: Temperature variation of ferromagnetic relaxation in the 3d transition metals, Phys. Rev. B 10, 179 (1974)CrossRefADSGoogle Scholar
  18. 18.
    W. S. Ament, G. Rado: Electromagnetic effects of spin wave resonance in ferromagnetic metals, Phys. Rev. 97, 1558 (1955)CrossRefADSGoogle Scholar
  19. 19.
    Z. Celinski, B. Heinrich: Ferromagnetic resonance line width of Fe ultrathin films grown on a bcc-Cu substrate, J. Appl. Phys. 70, 5935 (1991)CrossRefADSGoogle Scholar
  20. 20.
    M. Sparks, R. Loudon, C. Kittel: Ferromagnetic relaxation I, Theory of the relaxation of the uniform precession and the degenerate spectrum in insulators at low temperatures, Phys. Rev. 122, 791 (1961)zbMATHCrossRefADSGoogle Scholar
  21. 21.
    R. C. LeCraw, E. G. Spencer, C. S. Porter: Ferromagnetic resonance line widths in yttrium iron garnet, Phys. Rev. 110, 1311 (1958)CrossRefADSGoogle Scholar
  22. 22.
    D. P. Pappas, K. P. Kamper, H. Hopster: Reversible transition between perpendicular and in plane magnetization in ultra thin films, Phys. Rev. Lett. 64, 3179 (1990)CrossRefADSGoogle Scholar
  23. 23.
    R. P. Erickson, D.L. Mills: Magnetic instabilities in ultra thin ferromagnets, Phys. Rev. B 46, 861 (1992)CrossRefADSGoogle Scholar
  24. 24.
    R. Arias, D. L. Mills: Extrinsic contributions to the FMR response of ultrathin films, J. Appl. Phys. 87, 5455 (2000)CrossRefADSGoogle Scholar
  25. 25.
    W. Stoecklein, S.S. P. Parkin, J. C. Scott: Ferromagnetic resonance studies of exchange-biased Permalloy films, Phys. Rev. B 38, 6847 (1988)CrossRefADSGoogle Scholar
  26. 26.
    C. Mathieu, M. Bauer, B. Hillebrands, J. Fassbender, G. Güntherodt, R. Jungblut, J. Kohlhepp, A. Reiders: Brillouin light scattering investigations of exchange-biased (110) oriented NiFe/Fe/Mn bilayers, J. Appl. Phys. 83, 2863 (1998)CrossRefADSGoogle Scholar
  27. 27.
    P. Miltenyi, M. Gruyters, G. Güntherodt, J. Nogues, I.K. Schuller: Spin waves in exchange-biased FeF2, Phys. Rev. B 59, 3333 (1998)CrossRefADSGoogle Scholar
  28. 28.
    A. P. Malozemoff: Random field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces, Phys. Rev. B 35, 3679 (1987)CrossRefADSGoogle Scholar
  29. 29.
    A. P. Malozemoff: Mechanisms of exchange anisotropy, J. Appl. Phys. 63, 3874 (1988)CrossRefADSGoogle Scholar
  30. 30.
    W. H. Meiklejohn, C. P. Bean: New magnetic anisotropy, Phys. Rev. 102, 1413 (1956)CrossRefADSGoogle Scholar
  31. 31.
    W. H. Meiklejohn, C.P. Bean: New magnetic anisotropy, Phys. Rev. 105, 904 (1957)CrossRefADSGoogle Scholar
  32. 32.
    R. Arias, D. L. Mills: Theory of the spin excitations and the microwave response of ferromagnetic nanowires, Phys. Rev. B 63, 134–441 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Douglas L. Mills
    • 1
  • Sergio M. Rezende
    • 2
  1. 1.Department of Physics and AstronomyUniversity of CaliforniaIrvineUSA
  2. 2.Departamento de FisicaUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations